Generalized eigenvalue methods for Gaussian quadrature rules
[Méthodes de valeurs propres généralisées pour les formules de quadrature de Gauss]
Annales Henri Lebesgue, Tome 3 (2020), pp. 1327-1341.

Une formule de quadrature pour une mesure μ sur la droite réelle est une combinaison conique d’un nombre fini d’évaluations en des points, appelés nœuds, qui concorde avec l’intégration selon μ pour tout polynôme jusqu’à un certain degré fixé. Dans cet article, nous introduisons un polynôme bivarié dont les racines paramètrent les nœuds des formules de quadrature minimales pour une mesure donnée. Nous donnons deux représentations déterminantales symétriques pour ce polynôme, ce qui ramène le problème de recherche des nœuds à la résolution d’un problème aux valeurs propres généralisé.

A quadrature rule of a measure μ on the real line represents a conic combination of finitely many evaluations at points, called nodes, that agrees with integration against μ for all polynomials up to some fixed degree. In this paper, we present a bivariate polynomial whose roots parametrize the nodes of minimal quadrature rules for measures on the real line. We give two symmetric determinantal formulas for this polynomial, which translate the problem of finding the nodes to solving a generalized eigenvalue problem.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.62
Classification : 65D32, 14H50, 14P05, 15A22
Mots clés : quadrature, Gaussian quadrature, plane curves
Blekherman, Grigoriy 1 ; Kummer, Mario 2 ; Riener, Cordian 3 ; Schweighofer, Markus 4 ; Vinzant, Cynthia 5

1 School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, GA 30332-0160, (USA)
2 Technische Universität Dresden Fakultät Mathematik Institut für Geometrie, Zellescher Weg 12-14 01062 Dresden, (Germany)
3 Department of Mathematics and Statistics, Faculty of Science and Technology, UiT The Arctic University of Norway, 9037 Tromsø, (Norway)
4 Fachbereich Mathematik und Statistik, Universität Konstanz, 78457 Konstanz, (Germany)
5 Department of Mathematics, North Carolina State University, Box 8205, NC State University Raleigh, NC 27695-8205, (USA)
@article{AHL_2020__3__1327_0,
     author = {Blekherman, Grigoriy and Kummer, Mario and Riener, Cordian and Schweighofer, Markus and Vinzant, Cynthia},
     title = {Generalized eigenvalue methods for {Gaussian} quadrature rules},
     journal = {Annales Henri Lebesgue},
     pages = {1327--1341},
     publisher = {\'ENS Rennes},
     volume = {3},
     year = {2020},
     doi = {10.5802/ahl.62},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ahl.62/}
}
TY  - JOUR
AU  - Blekherman, Grigoriy
AU  - Kummer, Mario
AU  - Riener, Cordian
AU  - Schweighofer, Markus
AU  - Vinzant, Cynthia
TI  - Generalized eigenvalue methods for Gaussian quadrature rules
JO  - Annales Henri Lebesgue
PY  - 2020
SP  - 1327
EP  - 1341
VL  - 3
PB  - ÉNS Rennes
UR  - http://www.numdam.org/articles/10.5802/ahl.62/
DO  - 10.5802/ahl.62
LA  - en
ID  - AHL_2020__3__1327_0
ER  - 
%0 Journal Article
%A Blekherman, Grigoriy
%A Kummer, Mario
%A Riener, Cordian
%A Schweighofer, Markus
%A Vinzant, Cynthia
%T Generalized eigenvalue methods for Gaussian quadrature rules
%J Annales Henri Lebesgue
%D 2020
%P 1327-1341
%V 3
%I ÉNS Rennes
%U http://www.numdam.org/articles/10.5802/ahl.62/
%R 10.5802/ahl.62
%G en
%F AHL_2020__3__1327_0
Blekherman, Grigoriy; Kummer, Mario; Riener, Cordian; Schweighofer, Markus; Vinzant, Cynthia. Generalized eigenvalue methods for Gaussian quadrature rules. Annales Henri Lebesgue, Tome 3 (2020), pp. 1327-1341. doi : 10.5802/ahl.62. http://www.numdam.org/articles/10.5802/ahl.62/

[AK62] Aheizer, Naum I.; Krein, Mark G. Some questions in the theory of moments, Translations of Mathematical Monographs, 2, American Mathematical Society, 1962 (translated from russian by W. Fleming and D. Prill) | MR

[BDD + 00] Bai, Zhaojun; Demmel, James; Dongarra, Jack; Ruhe, Axel; van der Vorst, Henk Templates for the solution of algebraic eigenvalue problems: a practical guide, Software – Environments – Tools, 11, Society for Industrial and Applied Mathematics, 2000 | Zbl

[CF91] Curto, Raúl E.; Fialkow, Lawrence A. Recursiveness, positivity, and truncated moment problems, Houston J. Math., Volume 17 (1991) no. 4, pp. 603-635 | MR | Zbl

[GMV00] Golub, Gene H.; Milanfar, Peyman; Varah, James A stable numerical method for inverting shape from moments, SIAM J. Sci. Comput., Volume 21 (2000) no. 4, pp. 1222-1243 | DOI | MR | Zbl

[HV07] Helton, John William; Vinnikov, Victor Linear matrix inequality representation of sets, Commun. Pure Appl. Math., Volume 60 (2007) no. 5, pp. 654-674 | DOI | MR | Zbl

[Lau09] Laurent, Monique Sums of squares, moment matrices and optimization over polynomials, Emerging applications of algebraic geometry (Putinar, Mihai; Sullivant, Seth, eds.) (The IMA Volumes in Mathematics and its Applications), Volume 149, Springer, 2009, pp. 157-270 | MR

[Lau10] Laurent, Monique Sums of squares, moment matrices and optimization over polynomials (2010) (http://homepages.cwi.nl/~monique/files/moment-ima-update-new.pdf) | Zbl

[Sch17] Schmüdgen, Konrad The moment problem, Graduate Texts in Mathematics, 277, Springer, 2017 | Zbl

[Sze75] Szegö, Gábor Orthogonal polynomials, Colloquium Publications, 23, American Mathematical Society, 1975 | Zbl

[Tyr94] Tyrtyshnikov, Evgenij E. How bad are Hankel matrices?, Numer. Math., Volume 67 (1994) no. 2, pp. 261-269 | DOI | MR | Zbl

[Wag11] Wagner, David G. Multivariate stable polynomials: theory and applications, Bull. Am. Math. Soc. (N.S.), Volume 48 (2011) no. 1, pp. 53-84 | DOI | MR | Zbl

Cité par Sources :