Roots of Kostlan polynomials: moments, strong Law of Large Numbers and Central Limit Theorem
[Racines des polynômes de Kostlan  : moments, loi forte des grands nombres et théorème central limite]
Annales Henri Lebesgue, Tome 4 (2021), pp. 1659-1703.

Nous étudions le nombre de racines réelles d’un polynôme de Kostlan de degré d en une variable. Plus généralement, nous nous intéressons à la distribution de la mesure de comptage de l’ensemble des racines réelles d’un tel polynôme. Nous obtenons l’asymptotique des moments centrés de ces variables aléatoires, dans la limite des grands degrés. Nous en déduisons une loi forte des grands nombres et un théorème central limite. En particulier, les racines réelles d’un polynôme de Kostlan s’équidistribuent presque surement lorsque le degré tend vers l’infini. De plus, les fluctuations de la mesure de comptage de cet ensemble aléatoire convergent en distribution vers le bruit blanc gaussien standard. Nos résultats sont valables plus généralement pour les zéros réels d’une section réelle aléatoire dans le modèle dit de Fubini–Study complexe.

We study the number of real roots of a Kostlan random polynomial of degree d in one variable. More generally, we consider the counting measure of the set of real roots of such polynomials. We compute the large degree asymptotics of the central moments of these random variables. As a consequence, we obtain a strong Law of Large Numbers and a Central Limit Theorem. In particular, the real roots of a Kostlan polynomial almost surely equidistribute as the degree diverges. Moreover, the fluctuations of their counting measure converge in distribution to the Standard Gaussian White Noise. More generally, our results hold for the real zeros of a random real section in the complex Fubini–Study model.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.113
Classification : 14P25, 32L05, 60F05, 60F15, 60G15, 60G57
Mots clés : Kostlan polynomials, Complex Fubini–Study model, Kac–Rice formula, Law of Large Numbers, Central Limit Theorem, Method of moments.
Ancona, Michele 1 ; Letendre, Thomas 2

1 Tel Aviv University, School of Mathematical Sciences, Tel Aviv, (Israel)
2 Université Paris-Saclay, CNRS, Laboratoire de Mathématiques d’Orsay, Orsay, (France)
@article{AHL_2021__4__1659_0,
     author = {Ancona, Michele and Letendre, Thomas},
     title = {Roots of {Kostlan} polynomials: moments, strong {Law} of {Large} {Numbers} and {Central} {Limit} {Theorem}},
     journal = {Annales Henri Lebesgue},
     pages = {1659--1703},
     publisher = {\'ENS Rennes},
     volume = {4},
     year = {2021},
     doi = {10.5802/ahl.113},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ahl.113/}
}
TY  - JOUR
AU  - Ancona, Michele
AU  - Letendre, Thomas
TI  - Roots of Kostlan polynomials: moments, strong Law of Large Numbers and Central Limit Theorem
JO  - Annales Henri Lebesgue
PY  - 2021
SP  - 1659
EP  - 1703
VL  - 4
PB  - ÉNS Rennes
UR  - http://www.numdam.org/articles/10.5802/ahl.113/
DO  - 10.5802/ahl.113
LA  - en
ID  - AHL_2021__4__1659_0
ER  - 
%0 Journal Article
%A Ancona, Michele
%A Letendre, Thomas
%T Roots of Kostlan polynomials: moments, strong Law of Large Numbers and Central Limit Theorem
%J Annales Henri Lebesgue
%D 2021
%P 1659-1703
%V 4
%I ÉNS Rennes
%U http://www.numdam.org/articles/10.5802/ahl.113/
%R 10.5802/ahl.113
%G en
%F AHL_2021__4__1659_0
Ancona, Michele; Letendre, Thomas. Roots of Kostlan polynomials: moments, strong Law of Large Numbers and Central Limit Theorem. Annales Henri Lebesgue, Tome 4 (2021), pp. 1659-1703. doi : 10.5802/ahl.113. http://www.numdam.org/articles/10.5802/ahl.113/

[AADL18] Armentano, Diego; Azaïs, Jean-Marc; Dalmao, Federico; León, José R. Central Limit Theorem for the volume of the zero set of Kostlan Shub Smale random polynomial systems (2018) (https://arxiv.org/abs/1808.02967v1)

[AADL21] Armentano, Diego; Azaïs, Jean-Marc; Dalmao, Federico; León, José R. Central Limit Theorem for the number of real roots of Kostlan Shub Smale random polynomial systems, Am. J. Math., Volume 143 (2021) no. 4, pp. 1011-1042 | DOI | Zbl

[AL21] Ancona, Michele; Letendre, Thomas Zeros of smooth stationary Gaussian processes, Electron. J. Probab., Volume 26 (2021), 68 | MR | Zbl

[Anc21] Ancona, Michele Random sections of line bundles over real Riemann surfaces, Int. Math. Res. Not., Volume 2021 (2021) no. 9, pp. 7004-7059 | DOI | MR | Zbl

[AT07] Adler, Robert J.; Taylor, Jonathan E. Random fields and geometry, Springer Monographs in Mathematics, Springer, 2007 | DOI | Zbl

[AW09] Azaïs, Jean-Marc; Wschebor, Mario Level sets and extrema of random processes and fields, John Wiley & Sons, 2009 | DOI | Zbl

[BBL92] Bogomolny, Evgeny B.; Bohigas, Oriol; Leboeuf, Patricio Distribution of roots of random polynomials, Phys. Rev. Lett., Volume 68 (1992) no. 18, pp. 2726-2729 | DOI | MR | Zbl

[BDFZ20] Basu, Ridhipratim; Dembo, Amir; Feldheim, Naomi; Zeitouni, Ofer Exponential concentration of zeroes of stationary Gaussian processes, Int. Math. Res. Not. (2020) no. 23, pp. 9769-9796 | DOI | MR | Zbl

[Bil95] Billingsley, Patrick Probability and measure, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, 1995 | Zbl

[BSZ00] Bleher, Pavel; Shiffman, Bernard; Zelditch, Steve Universality and scaling of correlations between zeros on complex manifolds, Invent. Math., Volume 142 (2000) no. 2, pp. 351-395 | DOI | MR | Zbl

[Dal15] Dalmao, Federico Asymptotic variance and CLT for the number of zeros of Kostlan–Shub–Smale random polynomials, C. R. Math. Acad. Sci. Paris, Volume 353 (2015) no. 12, pp. 1141-1145 | DOI | MR | Zbl

[Fer67] Fernique, Xavier Processus linéaires, processus généralisés, Ann. Inst. Fourier, Volume 17 (1967) no. 1, pp. 1-92 | DOI | Numdam | MR | Zbl

[GH94] Griffiths, Philip; Harris, Joseph Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, 1994 (reprint of the 1978 original) | DOI | Zbl

[GW11] Gayet, Damien; Welschinger, Jean-Yves Exponential rarefaction of real curves with many components, Publ. Math., Inst. Hautes Étud. Sci. (2011) no. 113, pp. 69-96 | DOI | Numdam | MR | Zbl

[GW16] Gayet, Damien; Welschinger, Jean-Yves Betti numbers of random real hypersurfaces and determinants of random symmetric matrices, J. Eur. Math. Soc., Volume 18 (2016) no. 4, pp. 733-772 | DOI | MR | Zbl

[KL01] Kratz, Marie F.; León, José R. Central limit theorems for level functionals of stationary Gaussian processes and fields, J. Theor. Probab., Volume 14 (2001) no. 3, pp. 639-672 | DOI | MR | Zbl

[Kos93] Kostlan, Eric On the distribution of roots of random polynomials, From topology to computation: Proceedings of the Smalefest. Papers presented at the conference “From topology to computation: Unity and diversity in the mathematical sciences” held at the University of California at Berkeley, USA, August 5-9, 1990 in honor of Stephen Smale’s 60th birthday (Hirsch, M. W. et al., eds.), Springer (1993), pp. 419-431 | Zbl

[Let16] Letendre, Thomas Expected volume and Euler characteristic of random submanifolds, J. Funct. Anal., Volume 270 (2016) no. 8, pp. 3047-3110 | DOI | MR | Zbl

[Let19] Letendre, Thomas Variance of the volume of random real algebraic submanifolds, Trans. Am. Math. Soc., Volume 371 (2019) no. 6, p. 4129-–4192 | DOI | MR | Zbl

[LP19] Letendre, Thomas; Puchol, Martin Variance of the volume of random real algebraic submanifolds II, Indiana Univ. Math. J., Volume 68 (2019) no. 6, pp. 1649-1720 | DOI | MR | Zbl

[LS19] Lerario, Antonio; Stecconi, Michele Maximal and typical topology of real polynomial singularities (2019) (https://arxiv.org/abs/1906.04444, to be published at the Annales de l’Institut Fourier)

[MM07] Ma, Xianan; Marinescu, George Holomorphic Morse inequalities and Bergman kernels, Progress in Mathematics, 254, Birkhäuser, 2007 | Zbl

[MM15] Ma, Xianan; Marinescu, George Exponential estimate for the asymptotics of Bergman kernels, Math. Ann., Volume 362 (2015) no. 3–4, pp. 1327-1347 | DOI | MR | Zbl

[NS16] Nazarov, Fedor L.; Sodin, Mikhail Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions, J. Math. Phys. Anal. Geom., Volume 12 (2016) no. 3, pp. 205-278 | DOI | MR | Zbl

[Olv01] Olver, Peter J. Geometric foundations of numerical algorithms and symmetry, Appl. Algebra Eng. Commun. Comput., Volume 11 (2001) no. 5, pp. 417-436 | DOI | MR | Zbl

[Ros19] Rossi, Maurizia Random nodal lengths and Wiener chaos, Probabilistic methods in geometry, topology and spectral theory. CRM workshops on probabilistic methods in spectral geometry and PDE, August 22–26, 2016, and on probabilistic methods in topology, November 14–18, 2016, Centre de Recherches Mathématiques, Université de Montréal, Montréal, Quebec, Canada (Contemporary Mathematics), Volume 739, American Mathematical Society; Centre de Recherches Mathématiques (CRM), Montréal, 2019, pp. 155-169 | DOI | MR | Zbl

[ST04] Sodin, Mikhail; Tsirelson, Boris Random complex zeroes I: Asymptotic normality, Isr. J. Math., Volume 144 (2004), pp. 125-149 | DOI | MR | Zbl

[SZ99] Shiffman, Bernard; Zelditch, Steve Distribution of zeros of random and quantum chaotic sections of positive line bundles, Commun. Math. Phys., Volume 200 (1999) no. 3, pp. 661-683 | DOI | MR | Zbl

[SZ10] Shiffman, Bernard; Zelditch, Steve Number variance of random zeros on complex manifolds. II: Smooth statistics, Pure Appl. Math. Q., Volume 6 (2010) no. 4, pp. 1145-1167 | DOI | MR | Zbl

Cité par Sources :