This paper is the first of a series where we study the spectral properties of Dirac operators with the Coulomb potential generated by any finite signed charge distribution . We show here that the operator has a unique distinguished self-adjoint extension under the sole condition that has no atom of weight larger than or equal to one. Then we discuss the case of a positive measure and characterize the domain using a quadratic form associated with the upper spinor, following earlier works [EL07, EL08] by Esteban and Loss. This allows us to provide min-max formulas for the eigenvalues in the gap. In the event that some eigenvalues have dived into the negative continuum, the min-max formulas remain valid for the remaining ones. At the end of the paper we also discuss the case of multi-center Dirac–Coulomb operators corresponding to being a finite sum of deltas.
Dans ce premier article nous étudions les propriétés spectrales d’un opérateur de Dirac auquel on ajoute le potentiel de Coulomb généré par une distribution de charge quelconque. Nous montrons l’existence d’une unique extension auto-adjointe distinguée, sous la seule condition que ne possède aucun atome de poids supérieur ou égal à un. Ensuite, lorsque la mesure est positive nous caractérisons le domaine à l’aide d’une forme quadratique pour le spineur haut, suivant une méthode introduite par Esteban et Loss dans [EL07, EL08]. Ceci nous permet de prouver des formules de min-max pour les valeurs propres situées dans le trou spectral. La formule reste valable même dans le cas où certaines des valeurs propres ont plongé dans le spectre continu inférieur. À la fin de l’article nous discutons du cas d’une molécule, ce qui correspond à prendre égal à une somme finie de deltas.
Revised:
Accepted:
Published online:
Mots-clés : Dirac-Coulomb operators, self-adjointness, min-max formulas
@article{AHL_2021__4__1421_0, author = {Esteban, Maria J. and Lewin, Mathieu and S\'er\'e, \'Eric}, title = {Dirac{\textendash}Coulomb operators with general charge distribution {I.} {Distinguished} extension and min-max formulas}, journal = {Annales Henri Lebesgue}, pages = {1421--1456}, publisher = {\'ENS Rennes}, volume = {4}, year = {2021}, doi = {10.5802/ahl.106}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ahl.106/} }
TY - JOUR AU - Esteban, Maria J. AU - Lewin, Mathieu AU - Séré, Éric TI - Dirac–Coulomb operators with general charge distribution I. Distinguished extension and min-max formulas JO - Annales Henri Lebesgue PY - 2021 SP - 1421 EP - 1456 VL - 4 PB - ÉNS Rennes UR - http://www.numdam.org/articles/10.5802/ahl.106/ DO - 10.5802/ahl.106 LA - en ID - AHL_2021__4__1421_0 ER -
%0 Journal Article %A Esteban, Maria J. %A Lewin, Mathieu %A Séré, Éric %T Dirac–Coulomb operators with general charge distribution I. Distinguished extension and min-max formulas %J Annales Henri Lebesgue %D 2021 %P 1421-1456 %V 4 %I ÉNS Rennes %U http://www.numdam.org/articles/10.5802/ahl.106/ %R 10.5802/ahl.106 %G en %F AHL_2021__4__1421_0
Esteban, Maria J.; Lewin, Mathieu; Séré, Éric. Dirac–Coulomb operators with general charge distribution I. Distinguished extension and min-max formulas. Annales Henri Lebesgue, Volume 4 (2021), pp. 1421-1456. doi : 10.5802/ahl.106. http://www.numdam.org/articles/10.5802/ahl.106/
[ADV13] Self-adjoint extensions of Dirac operators with Coulomb type singularity, J. Math. Phys., Volume 54 (2013) no. 4, 041504 | DOI | MR | Zbl
[ASI + 10] Finite basis set approach to the two-centre Dirac problem in Cassini coordinates, J. Phys. B: At. Mol. Opt. Phys., Volume 43 (2010) no. 23, 235207 | DOI
[BDE08] Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators, Commun. Pure Appl. Anal., Volume 7 (2008) no. 3, pp. 533-562 | DOI | MR | Zbl
[BH03] Two-centre Dirac–Coulomb operators: regularity and bonding properties, Ann. Phys., Volume 306 (2003) no. 2, pp. 159-192 | DOI | MR | Zbl
[CPWS13] Evidence for Low-Temperature Melting of Mercury owing to Relativity, Angew. Chem. Int. Ed., Volume 52 (2013) no. 29, pp. 7583-7585 | DOI
[DD88] The minimax technique in relativistic Hartree–Fock calculations, Pramana, Volume 30 (1988) no. 5, pp. 387-405 | DOI
[DELV04] An analytical proof of Hardy-like inequalities related to the Dirac operator, J. Funct. Anal., Volume 216 (2004) no. 1, pp. 1-21 | DOI | MR | Zbl
[DES00a] On the eigenvalues of operators with gaps. Application to Dirac operators, J. Funct. Anal., Volume 174 (2000) no. 1, pp. 208-226 | DOI | MR | Zbl
[DES00b] Variational characterization for eigenvalues of Dirac operators, Calc. Var. Partial Differ. Equ., Volume 10 (2000) no. 4, pp. 321-347 | DOI | MR | Zbl
[DES03] A variational method for relativistic computations in atomic and molecular physics, Int. J. Quantum Chem., Volume 93 (2003) no. 3, pp. 149-155 | DOI
[DES06] General results on the eigenvalues of operators with gaps, arising from both ends of the gaps. Application to Dirac operators, J. Eur. Math. Soc., Volume 8 (2006) no. 2, pp. 243-251 | DOI | MR | Zbl
[EL07] Self-adjointness for Dirac operators via Hardy–Dirac inequalities, J. Math. Phys., Volume 48 (2007) no. 11, 112107 | MR | Zbl
[EL08] Self-adjointness via partial Hardy-like inequalities, Mathematical results in quantum mechanics. Proceedings of the QMath10 conference, Moieciu, Romania, 10–15 September 2007, World Scientific, 2008, pp. 41-47 | DOI | MR | Zbl
[ELS08] Variational methods in relativistic quantum mechanics, Bull. Am. Math. Soc., Volume 45 (2008) no. 4, pp. 535-593 | DOI | MR | Zbl
[ELS19] Domains for Dirac–Coulomb min-max levels, Rev. Mat. Iberoam., Volume 35 (2019) no. 3, pp. 877-924 | DOI | MR | Zbl
[ELS21] Dirac–Coulomb operators with general charge distribution. II. The lowest eigenvalue, Proc. Lond. Math. Soc., Volume 123 (2021) no. 4, pp. 345-383 | DOI | MR
[ES99] Solutions of the Dirac–Fock equations for atoms and molecules, Commun. Math. Phys., Volume 203 (1999) no. 3, pp. 499-530 | DOI | MR | Zbl
[GAD10] Relativistic effects on the linear optical properties of , , and , New J. Phys., Volume 12 (2010) no. 10, 103048 | DOI
[GS99] A minimax principle for the eigenvalues in spectral gaps, J. Lond. Math. Soc., Volume 60 (1999) no. 2, pp. 490-500 | DOI | MR | Zbl
[HK83] On the double-well problem for Dirac operators, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 38 (1983) no. 2, pp. 153-166 | Numdam | MR | Zbl
[Kar85] Generalized Dirac-operators with several singularities, J. Oper. Theory, Volume 13 (1985) no. 1, pp. 171-188 | MR | Zbl
[Kat83] Holomorphic families of Dirac operators, Math. Z., Volume 183 (1983) no. 3, pp. 399-406 | DOI | MR | Zbl
[Kla80] Dirac operators with several Coulomb singularities, Helv. Phys. Acta, Volume 53 (1980) no. 3, pp. 463-482 | MR
[KW79] Characterization and uniqueness of distinguished selfadjoint extensions of Dirac operators, Commun. Math. Phys., Volume 64 (1978/79) no. 2, pp. 171-176 | DOI | MR | Zbl
[KW79] Spectral properties of Dirac operators with singular potentials, J. Math. Anal. Appl., Volume 72 (1979) no. 1, pp. 206-214 | DOI | MR | Zbl
[McC13] Two centre problems in relativistic atomic physics, Ph. D. Thesis, University of Heidelberg, Germany (2013)
[MM15] On the minimax principle for Coulomb–Dirac operators, Math. Z., Volume 280 (2015) no. 3, pp. 733-747 | DOI | MR | Zbl
[Mül16] Minimax principles, Hardy–Dirac inequalities, and operator cores for two and three dimensional Coulomb–Dirac operators, Doc. Math., Volume 21 (2016), pp. 1151-1169 | MR | Zbl
[Nen76] Self-adjointness and invariance of the essential spectrum for Dirac operators defined as quadratic forms, Commun. Math. Phys., Volume 48 (1976) no. 3, pp. 235-247 | DOI | MR | Zbl
[Nen77] Distinguished self-adjoint extension for Dirac operator with potential dominated by multicenter Coulomb potentials, Helv. Phys. Acta, Volume 50 (1977) no. 1, pp. 1-3 | MR
[RS75] Methods of Modern Mathematical Physics. II. Fourier analysis, self-adjointness, Academic Press Inc., 1975 | MR | Zbl
[Sch72] Distinguished selfadjoint extensions of Dirac operators, Math. Z., Volume 129 (1972), pp. 335-349 | DOI | MR | Zbl
[Sim05] Trace ideals and their applications, Mathematical Surveys and Monographs, 120, American Mathematical Society, 2005 | MR | Zbl
[SST20] Friedrichs Extension and Min-Max Principle for Operators with a Gap, Ann. Henri Poincaré, Volume 21 (2020) no. 2, pp. 327-357 | DOI | MR | Zbl
[Tal86] Minimax principle for the Dirac equation, Phys. Rev. Lett., Volume 57 (1986), pp. 1091-1094 | DOI | MR
[Tha92] The Dirac equation, Texts and Monographs in Physics, Springer, 1992 | DOI | MR
[Tix98] Strict positivity of a relativistic Hamiltonian due to Brown and Ravenhall, Bull. Lond. Math. Soc., Volume 30 (1998) no. 3, pp. 283-290 | DOI | MR | Zbl
[Wüs73] A convergence theorem for selfadjoint operators applicable to Dirac operators with cutoff potentials, Math. Z., Volume 131 (1973), pp. 339-349 | DOI | MR | Zbl
[Wüs75] Distinguished self-adjoint extensions of Dirac operators constructed by means of cut-off potentials, Math. Z., Volume 141 (1975), pp. 93-98 | DOI | MR | Zbl
[Wüs77] Dirac operations with strongly singular potentials. Distinguished self-adjoint extensions constructed with a spectral gap theorem and cut-off potentials, Math. Z., Volume 152 (1977) no. 3, pp. 259-271 | MR | Zbl
[ZEP11] Relativity and the mercury battery, Phys. Chem. Chem. Phys., Volume 13 (2011) no. 37, pp. 16510-16512 | DOI
Cited by Sources: