Some functional transcendence results around the Schwarzian differential equation.
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 29 (2020) no. 5, pp. 1265-1300.

This paper centers around proving variants of the Ax–Lindemann–Weierstrass (ALW) theorem for analytic functions which satisfy Schwarzian differential equations. In previous work, the authors proved the ALW theorem for the uniformizers of genus zero Fuchsian groups, and in this work, we generalize that result in several ways using a variety of techniques from model theory, differential Galois theory and complex geometry.

Dans cet article, nous démontrons des variantes du théorème d’Ax–Lindemann–Weierstrass (ALW) pour des fonctions analytiques satisfaisant des équations différentielles de type « Schwarzienne ». Dans des travaux antérieurs, nous avons prouvé le théorème ALW pour les uniformisantes de groupes fuchsiens de genre zéro. Dans ce travail, nous généralisons ce résultat de plusieurs manières en utilisant des techniques variées provenant de la théorie des modèles, de la théorie de Galois différentielle et de la géométrie complexe.

Published online:
DOI: 10.5802/afst.1661
Classification: 11F03, 12H05, 03C60
Blázquez-Sanz, David 1; Casale, Guy 2; Freitag, James 3; Nagloo, Joel 4

1 Universidad Nacional de Colombia - Sede Medellín, Facultad de Ciencias, Escuela de Matemáticas, Colombia
2 Univ Rennes, CNRS, IRMAR-UMR 6625, F-35000 Rennes, France
3 University of Illinois Chicago, Department of Mathematics, Statistics, and Computer Science, 851 S. Morgan Street, Chicago, IL, USA, 60607-7045.
4 CUNY Bronx Community College, Department of Mathematics and Computer Science, Bronx, NY 10453, and CUNY Graduate Center, Ph.D. programs in Mathematics, 365 Fifth Avenue, New York, NY 10016, USA
@article{AFST_2020_6_29_5_1265_0,
     author = {Bl\'azquez-Sanz, David and Casale, Guy and Freitag, James and Nagloo, Joel},
     title = {Some functional transcendence results around the {Schwarzian} differential equation.},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1265--1300},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 29},
     number = {5},
     year = {2020},
     doi = {10.5802/afst.1661},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/afst.1661/}
}
TY  - JOUR
AU  - Blázquez-Sanz, David
AU  - Casale, Guy
AU  - Freitag, James
AU  - Nagloo, Joel
TI  - Some functional transcendence results around the Schwarzian differential equation.
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2020
SP  - 1265
EP  - 1300
VL  - 29
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - http://www.numdam.org/articles/10.5802/afst.1661/
DO  - 10.5802/afst.1661
LA  - en
ID  - AFST_2020_6_29_5_1265_0
ER  - 
%0 Journal Article
%A Blázquez-Sanz, David
%A Casale, Guy
%A Freitag, James
%A Nagloo, Joel
%T Some functional transcendence results around the Schwarzian differential equation.
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2020
%P 1265-1300
%V 29
%N 5
%I Université Paul Sabatier, Toulouse
%U http://www.numdam.org/articles/10.5802/afst.1661/
%R 10.5802/afst.1661
%G en
%F AFST_2020_6_29_5_1265_0
Blázquez-Sanz, David; Casale, Guy; Freitag, James; Nagloo, Joel. Some functional transcendence results around the Schwarzian differential equation.. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 29 (2020) no. 5, pp. 1265-1300. doi : 10.5802/afst.1661. http://www.numdam.org/articles/10.5802/afst.1661/

[1] Ablowitz, Mark J.; Fokas, Athanassios S. Complex Variables: Introduction and Applications, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2003 | Zbl

[2] Baldwin, John T.; Lachlan, Alistair H. On strongly minimal sets, J. Symb. Log., Volume 36 (1971), pp. 79-96 | DOI | MR | Zbl

[3] Belyĭ, Gennadii V On Galois extensions of a maximal cyclotomic field, Math. USSR, Izv., Volume 14 (1980) no. 2, pp. 247-256 | DOI | MR | Zbl

[4] Blum, L. Generalized algebraic theories: a model theorectic approach, Ph. D. Thesis, Massachusetts Institute of Technology (USA) (1968)

[5] Casale, Guy; Freitag, James; Nagloo, Joel Ax–Lindemann–Weierstrass with derivatives and the genus 0 Fuchsian groups, Ann. Math., Volume 192 (2020) no. 3, pp. 721-765 | DOI | MR | Zbl

[6] Freitag, James; Scanlon, Thomas Strong minimality and the j-function, J. Eur. Math. Soc., Volume 20 (2018) no. 1, pp. 119-136 | DOI | MR | Zbl

[7] Greenberg, Leon Maximal Fuchsian groups, Bull. Am. Math. Soc., Volume 69 (1963), pp. 569-573 | DOI | MR | Zbl

[8] Hart, Bradd; Valeriote, Matthew Lectures on algebraic model theory, Fields Institute Monographs, 15, American Mathematical Society, 2002 | MR | Zbl

[9] Kamensky, Moshe; Pillay, Anand Interpretations and Differential Galois Extensions, Int. Math. Res. Not., Volume 2016 (2016) no. 24, pp. 7390-7413 | DOI | MR | Zbl

[10] Kimura, Tosihusa On Riemann’s equations which are solvable by quadratures, Funkc. Ekvacioj, Volume 12 (1969), pp. 269-281 | MR | Zbl

[11] Klingler, Bruno; Ullmo, Emmanuel; Yafaev, Andrei Bi-algebraic geometry and the André–Oort conjecture, Algebraic Geometry: Salt Lake City 2015, Part 2 (Utah, 2015) (Proceedings of Symposia in Pure Mathematics), Volume 97, American Mathematical Society; Clay Mathematics Institute, 2016, pp. 319-360 | Zbl

[12] Kolchin, Ellis R. Galois theory of differential fields, Am. J. Math., Volume 75 (1953) no. 4, pp. 753-824 | DOI | MR | Zbl

[13] Kolchin, Ellis R. Differential algebra and algebraic groups, Pure and Applied Mathematics, 54, Academic Press Inc., 1973 | MR | Zbl

[14] Kovacic, Jerald J. An algorithm for solving second order linear homogeneous differential equations, J. Symb. Comput., Volume 2 (1986), pp. 3-43 | DOI | MR | Zbl

[15] Lehner, Joseph Discontinuous groups and automorphic functions, Mathematical Surveys, 8, American Mathematical Society, 1964 | MR | Zbl

[16] Magid, Andy R. Lectures on Differential Galois Theory, University Lecture Series, 7, American Mathematical Society, 1994 | MR | Zbl

[17] Margulis, Grigoriĭ A. Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 17, Springer, 1990

[18] Marker, David Strongly minimal sets and geometry, Colloquium ’95 (Haifa) (Lecture Notes in Logic), Volume 11, Springer, 1998, pp. 191-213 | DOI | MR | Zbl

[19] Marker, David Introduction to model theory, Model theory, algebra, and geometry (Mathematical Sciences Research Institute Publications), Volume 39, Cambridge University Press, 2000, pp. 15-35 | MR | Zbl

[20] Moonen, Ben Linearity properties of Shimura varieties. I, J. Algebr. Geom., Volume 7 (1998) no. 3, pp. 539-567 | MR | Zbl

[21] Nagloo, Joel Model Theory, Algebra and Differential Equations, Ph. D. Thesis, University of Leeds (UK) (2014) | MR

[22] Nagloo, Joel; Pillay, Anand On the algebraic independence of generic Painlevé transcendents, Compos. Math., Volume 150 (2014) no. 4, pp. 668-678 | DOI | Zbl

[23] Nagloo, Joel; Pillay, Anand On Algebraic relations between solutions of a generic Painlevé equation, J. Reine Angew. Math., Volume 726 (2017), pp. 1-27 | DOI | Zbl

[24] Nishioka, Keiji A conjecture of Mahler on automorphic functions, Arch. Math., Volume 53 (1989) no. 1, pp. 46-51 | DOI | MR | Zbl

[25] Painlevé, Paul Leçons de Stokholm (1875), Oeuvres complètes Tome 1, Volume 1, éditions du CNRS, 1972

[26] Pila, Jonathan o-minimality and the André–Oort conjecture for n , Ann. Math., Volume 173 (2011) no. 3, pp. 1779-1840 | DOI | Zbl

[27] Pillay, Anand Geometric stability theory, Oxford Logic Guides, 32, Oxford University Press, 1996 | MR | Zbl

[28] Pillay, Anand Stable embeddedness and NIP, J. Symb. Log., Volume 76 (2011) no. 2, pp. 665-672 | DOI | MR | Zbl

[29] Ritt, Joseph Differential algebra, Colloquium Publications, 33, American Mathematical Society, 1950 | MR | Zbl

[30] Robinson, A. On the concept of a differentially closed field, 1959 (Office of Scientific Research, US Air Force) | Zbl

[31] de Saint-Gervais, Henri P. Uniformization of Riemann Surfaces. Revisiting a hundred-year-old-problem, Heritage of European Mathematics, European Mathematical Society, 2016 | Zbl

[32] Shimura, Goro Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan. Kanô Memorial Lectures, 11, Princeton University Press, 1994 | MR | Zbl

[33] Singerman, David Finitely maximal Fuchsian groups, J. Lond. Math. Soc., Volume 6 (1972), pp. 29-38 | DOI | MR | Zbl

[34] Singerman, David Riemann surfaces, Belyi functions and hypermaps, Topics on Riemann surfaces and Fuchsian groups (London Mathematical Society Lecture Note Series), Volume 287, Cambridge University Press, 2001, pp. 43-68 | DOI | MR | Zbl

[35] Takeuchi, Kisao Arithmetic triangle groups, J. Math. Soc. Japan, Volume 29 (1977), pp. 91-106 | MR | Zbl

[36] Umemura, Hiroshi On the irreducibility of the first differential equation of Painlevé, Algebraic geometry and commutative algebra. Vol II, Konokuniya Company Ltd., 1988, pp. 771-789 | DOI | Zbl

[37] Umemura, Hiroshi Second proof of the irreducibility of the first differential equation of Painlevé, Nagoya Math. J. (1990) no. 117, pp. 125-171 | DOI | Zbl

[38] Vignéras, Marie-France Arithmétique des algébres de quaternions, Lecture Notes in Mathematics, 800, Springer, 1980 | Zbl

[39] Yoshida, Masaaki Hypergeometric Functions, My Love, Aspects of Mathematics, E32, Springer, 1997 | Zbl

[40] Zimmer, Robert J. Ergodic theory and semisimple groups, Monographs in Mathematics, 81, Birkhäuser, 1984 | MR | Zbl

Cited by Sources: