On the Picard number of divisors in Fano manifolds
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 45 (2012) no. 3, pp. 363-403.

Let X be a complex Fano manifold of arbitrary dimension, and D a prime divisor in X. We consider the image 𝒩 1 (D,X) of 𝒩 1 (D) in 𝒩 1 (X) under the natural push-forward of 1-cycles. We show that ρ X -ρ D codim𝒩 1 (D,X)8. Moreover if codim𝒩 1 (D,X)3, then either XS×T where S is a Del Pezzo surface, or codim𝒩 1 (D,X)=3 and X has a fibration in Del Pezzo surfaces onto a Fano manifold T such that ρ X -ρ T =4.

Soient X une variété de Fano lisse et complexe de dimension arbitraire, et D un diviseur premier dans X. Nous considérons l’image 𝒩 1 (D,X) de 𝒩 1 (D) dans 𝒩 1 (X) par l’application naturelle de push-forward de 1-cycles. Nous démontrons que ρ X -ρ D codim𝒩 1 (D,X)8. De plus, si codim𝒩 1 (D,X)3, alors soit XS×TS est une surface de Del Pezzo, soit codim𝒩 1 (D,X)=3 et X a une fibration en surfaces de Del Pezzo sur une variété de Fano lisse T, telle que ρ X -ρ T =4.

DOI: 10.24033/asens.2168
Classification: 14J45, 14E30
Keywords: Fano varieties, Mori theory, extremal rays
Mot clés : variétés de Fano, théorie de Mori, rayons extrêmaux
@article{ASENS_2012_4_45_3_363_0,
     author = {Casagrande, Cinzia},
     title = {On the {Picard} number of divisors in {Fano} manifolds},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {363--403},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 45},
     number = {3},
     year = {2012},
     doi = {10.24033/asens.2168},
     mrnumber = {3014481},
     zbl = {1267.14050},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2168/}
}
TY  - JOUR
AU  - Casagrande, Cinzia
TI  - On the Picard number of divisors in Fano manifolds
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2012
SP  - 363
EP  - 403
VL  - 45
IS  - 3
PB  - Société mathématique de France
UR  - http://www.numdam.org/articles/10.24033/asens.2168/
DO  - 10.24033/asens.2168
LA  - en
ID  - ASENS_2012_4_45_3_363_0
ER  - 
%0 Journal Article
%A Casagrande, Cinzia
%T On the Picard number of divisors in Fano manifolds
%J Annales scientifiques de l'École Normale Supérieure
%D 2012
%P 363-403
%V 45
%N 3
%I Société mathématique de France
%U http://www.numdam.org/articles/10.24033/asens.2168/
%R 10.24033/asens.2168
%G en
%F ASENS_2012_4_45_3_363_0
Casagrande, Cinzia. On the Picard number of divisors in Fano manifolds. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 45 (2012) no. 3, pp. 363-403. doi : 10.24033/asens.2168. http://www.numdam.org/articles/10.24033/asens.2168/

[1] T. Ando, On extremal rays of the higher-dimensional varieties, Invent. Math. 81 (1985), 347-357. | MR | Zbl

[2] M. Andreatta, E. Ballico & J. A. Wiśniewski, Vector bundles and adjunction, Internat. J. Math. 3 (1992), 331-340. | MR | Zbl

[3] M. Andreatta & J. A. Wiśniewski, A view on contractions of higher-dimensional varieties, in Algebraic geometry-Santa Cruz 1995, Proc. Sympos. Pure Math. 62, Amer. Math. Soc., 1997, 153-183. | MR | Zbl

[4] A. Beauville, Prym varieties and the Schottky problem, Invent. Math. 41 (1977), 149-196. | MR | Zbl

[5] C. Birkar, P. Cascini, C. D. Hacon & J. Mckernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), 405-468. | MR | Zbl

[6] L. Bonavero, F. Campana & J. A. Wiśniewski, Variétés complexes dont l'éclatée en un point est de Fano, C. R. Math. Acad. Sci. Paris 334 (2002), 463-468. | MR | Zbl

[7] L. Bonavero, C. Casagrande, O. Debarre & S. Druel, Sur une conjecture de Mukai, Comment. Math. Helv. 78 (2003), 601-626. | MR | Zbl

[8] L. Bonavero, C. Casagrande & S. Druel, On covering and quasi-unsplit families of curves, J. Eur. Math. Soc. (JEMS) 9 (2007), 45-57. | MR | Zbl

[9] C. Casagrande, Toric Fano varieties and birational morphisms, Int. Math. Res. Not. 27 (2003), 1473-1505. | MR | Zbl

[10] C. Casagrande, Quasi-elementary contractions of Fano manifolds, Compos. Math. 144 (2008), 1429-1460. | MR | Zbl

[11] C. Casagrande, On Fano manifolds with a birational contraction sending a divisor to a curve, Michigan Math. J. 58 (2009), 783-805. | MR | Zbl

[12] O. Debarre, Higher-dimensional algebraic geometry, Universitext, Springer, 2001. | MR | Zbl

[13] Y. Hu & S. Keel, Mori dream spaces and GIT, Michigan Math. J. 48 (2000), 331-348. | MR | Zbl

[14] S. Ishii, Quasi-Gorenstein Fano 3-folds with isolated nonrational loci, Compositio Math. 77 (1991), 335-341. | Numdam | MR | Zbl

[15] J. Kollár, Rational curves on algebraic varieties, Ergebn. Math. Grenzg. 32, Springer, 1996. | Zbl

[16] J. Kollár & S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics 134, Cambridge Univ. Press, 1998. | Zbl

[17] R. Lazarsfeld, Positivity in algebraic geometry. I, Ergebn. Math. Grenzg. 48, Springer, 2004. | MR | Zbl

[18] G. Occhetta, A characterization of products of projective spaces, Canad. Math. Bull. 49 (2006), 270-280. | Zbl

[19] V. G. Sarkisov, On conic bundle structures, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), 371-408; English translation: Math. USSR Izvestia 20 (1982), 355-390. | Zbl

[20] T. Tsukioka, Classification of Fano manifolds containing a negative divisor isomorphic to projective space, Geom. Dedicata 123 (2006), 179-186. | Zbl

[21] J. A. Wiśniewski, On contractions of extremal rays of Fano manifolds, J. reine angew. Math. 417 (1991), 141-157. | Zbl

Cited by Sources: