Substructuring preconditioners for h-p Mortar FEM
ESAIM: Mathematical Modelling and Numerical Analysis , Volume 50 (2016) no. 4, pp. 1057-1082.

We build and analyze a substructuring preconditioner for the Mortar method, applied to elliptic problems, in the h-p finite element framework. Particular attention is given to the construction of the coarse component of the preconditioner in this framework, in which continuity at the cross points is not required. Two variants are proposed: the first one is an improved version of a coarse preconditioner already presented in [S. Bertoluzza and M. Pennacchio, Appl. Numer. Anal. Comput. Math. 1 (2004) 434–454]. The second is new and is built by using a Discontinuous Galerkin interior penalty method as coarse problem. A bound of the condition number is proven for both variants and their efficiency and scalability is illustrated by numerical experiments.

Received:
Accepted:
DOI: 10.1051/m2an/2015065
Classification: 65N30, 65N55, 65F10
Keywords: Domain decomposition methods, iterative substructuring, mortar method, h-pFEM
Bertoluzza, Silvia 1; Pennacchio, Micol 1; Prud’homme, Christophe 2; Samake, Abdoulaye 3

1 IMATI “E. Magenes”, CNR, via Ferrata 1, 27100 Pavia, Italy.
2 Université de Strasbourg, CNRS, IRMA, UMR 7501, 67000 Strasbourg, France.
3 Laboratoire Jean Kuntzmann, Université Joseph Fourier, UMR 5224, 38041 Grenoble, France.
@article{M2AN_2016__50_4_1057_0,
     author = {Bertoluzza, Silvia and Pennacchio, Micol and Prud{\textquoteright}homme, Christophe and Samake, Abdoulaye},
     title = {Substructuring preconditioners for $h - p$ {Mortar} {FEM}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1057--1082},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {4},
     year = {2016},
     doi = {10.1051/m2an/2015065},
     zbl = {1350.65116},
     mrnumber = {3521712},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2015065/}
}
TY  - JOUR
AU  - Bertoluzza, Silvia
AU  - Pennacchio, Micol
AU  - Prud’homme, Christophe
AU  - Samake, Abdoulaye
TI  - Substructuring preconditioners for $h - p$ Mortar FEM
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 1057
EP  - 1082
VL  - 50
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2015065/
DO  - 10.1051/m2an/2015065
LA  - en
ID  - M2AN_2016__50_4_1057_0
ER  - 
%0 Journal Article
%A Bertoluzza, Silvia
%A Pennacchio, Micol
%A Prud’homme, Christophe
%A Samake, Abdoulaye
%T Substructuring preconditioners for $h - p$ Mortar FEM
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 1057-1082
%V 50
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2015065/
%R 10.1051/m2an/2015065
%G en
%F M2AN_2016__50_4_1057_0
Bertoluzza, Silvia; Pennacchio, Micol; Prud’homme, Christophe; Samake, Abdoulaye. Substructuring preconditioners for $h - p$ Mortar FEM. ESAIM: Mathematical Modelling and Numerical Analysis , Volume 50 (2016) no. 4, pp. 1057-1082. doi : 10.1051/m2an/2015065. http://www.numdam.org/articles/10.1051/m2an/2015065/

Y. Achdou and O. Pironneau, A fast solver for Navier stokes equations in the laminar regime using mortar finite element and boundary element methods. SIAM J. Numer. Anal. 32 (1995) 985–1016. | DOI | MR | Zbl

Y. Achdou, Y. Maday and O.B. Widlund, Iterative substructuring preconditioners for mortar element methods in two dimensions. SIAM J. Numer. Anal. 36 (1999) 551–580. | DOI | MR | Zbl

P. Antonietti, B. Ayuso De Dios, S. Bertoluzza and M. Pennacchio, Substructuring preconditioners for an hp domain decomposition method with interior penalty mortaring. Calcolo 52 (2015) 289–316. | DOI | MR | Zbl

S. Ashby, M. Holst, A. Manteuffel and P. Saylor, The role of the inner product in stopping criteria for conjugate gradient iterations. BIT Numer. Math. 41 (2001) 26–52. | DOI | MR | Zbl

I. Babuška and M. Suri, The p and h-p versions of the finite element method, basic principles and properties. SIAM Rev. 36 (1994) 578–632. | DOI | MR | Zbl

L. Beirăo Da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | DOI | MR | Zbl

Z. Belhachmi and C. Bernardi, The mortar spectral element method for fourth-order problems. Comput. Methods Appl. Mech. Eng. 116 (1994) 53–58. | DOI | MR | Zbl

F. Ben Belgacem, P. Seshaiyer and M. Suri, Optimal convergence rates of hp mortar finite element methods for second-order elliptic problems. ESAIM: M2AN 34 (2000) 591–608. | DOI | Numdam | MR | Zbl

F. Ben Belgacem, A. Buffa and Y. Maday, The mortar finite element method for 3d maxwell equations: First results. SIAM J. Numer. Anal. 39 (2001) 880–901. | DOI | MR | Zbl

C. Bernardi, Y. Maday and A.T. Patera, A new non conforming approach to domain decomposition: The mortar element method. In Collège de France Seminar, edited by H. Brezis and J.-L. Lions. This paper appeared as a technical report about five years earlier. Pitman (1994). | MR | Zbl

S. Bertoluzza, Substructuring preconditioners for the three fields domain decomposition method. Math. Comput. 73 (2004) 659–689. | DOI | MR | Zbl

S. Bertoluzza and S. Falletta, Analysis of some injection bounds for Sobolev spaces by wavelet decomposition. C. R. Math. 349 (2011) 421–428. | DOI | MR | Zbl

S. Bertoluzza and M. Pennacchio, Preconditioning the mortar method by substructuring: the high order case. Appl. Numer. Anal. Comput. Math. 1 (2004) 434–454. | DOI | MR | Zbl

P.E. Bjørstad and O.B. Widlund, Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Numer. Anal. 23 (1986) 1093–1120. | DOI | MR | Zbl

J.H. Bramble, J.E. Pasciak and A.H. Schatz, The construction of preconditioners for elliptic problems by substructuring I. Math. Comput. 47 (1986) 103–134. | DOI | MR | Zbl

S. Brenner, The condition number of the schur complement in domain decomposition. Numer. Math. 83 (1999) 127–203. | DOI | MR | Zbl

C. Canuto, M. Hussaini, A. Quarteroni and T. Zang, Spectral Methods. Scientific Computation. Springer (2006). | MR | Zbl

N. Dokeva, M. Dryja and W. Proskurowski, A FETI-DP preconditioner with a special scaling for mortar discretization of elliptic problems with discontinuous coefficients. SIAM J. Numer. Anal. 44 (2006) 283–299. | DOI | MR | Zbl

M. Dryja, A capacitance matrix method for Dirichlet problem on polygon region. Numer. Math. 39 (1982) 51–64. | DOI | MR | Zbl

G.H. Golub and C.F. Van Loan, Matrix computations. Johns Hopkins Studies in the Mathematical Sciences. 3rd edition. Johns Hopkins University Press, Baltimore, MD (1996). | MR | Zbl

B. Guo and W. Cao, A preconditioner for the h-p version of the finite element method in two dimensions. Numer. Math. 75 (1996) 59–77. | DOI | MR | Zbl

H. Kim, A FETI-DP preconditioner for mortar methods in three dimensions. Electron. Trans. Numer. Anal. 26 (2007) 103–120. | MR | Zbl

H. Kim and C. Lee, A preconditioner for the FETI-DP formulation with mortar methods in two dimensions. SIAM J. Numer. Anal. 42 (2005) 2159–2175. | DOI | MR | Zbl

H.H. Kim and O.B. Widlund, Two-level schwarz algorithms with overlapping subregions for mortar finite elements. SIAM J. Numer. Anal. 44 (2006) 1514–1534. | DOI | MR | Zbl

H. Kim, M. Dryja and O. Widlund, A BDDC method for mortar discretizations using a transformation of basis. SIAM J. Numer. Anal. 4 (2009) 136–157. | DOI | MR | Zbl

J.L. Lions and E. Magenes, Non Homogeneous Boundary Value Problems and Applications. Springer (1972). | MR | Zbl

M. Pennacchio, The mortar finite element method for the cardiac “bidomain” model of extracellular potential. J. Sci. Comput. 20 (2004) 191–210. | DOI | MR | Zbl

M. Pennacchio and V. Simoncini, Substructuring preconditioners for mortar discretization of a degenerate evolution problem. J. Sci. Comput. 36 (2008) 391–419. | DOI | MR | Zbl

C. Prud’homme, A strategy for the resolution of the tridimensionnal incompressible Navier-Stokes equations. In vol. 10 of Méthodes itératives de décomposition de domaines et communications en calcul parallèle. Calculateurs Parallèles Réséaux et Systèmes répartis. Hermes (1998) 371–380.

C. Prud’Homme, V. Chabannes, V. Doyeux, M. Ismail, A. Samake and G. Pena, Feel++: A Computational Framework for Galerkin Methods and Advanced Numerical Methods (2012). | MR

C. Prud’homme, V. Chabannes, S. Veys, V. Huber, C. Daversin, A. Ancel, R. Tarabay, V. Doyeux, J.-B. Wahl, C. Trophime, A. Samake, G. Doll and A. Ancel. feelpp v0.98.0. (2014).

A. Samake, S. Bertoluzza, M. Pennacchio and C. Prud’homme, Implementation and numerical results of substructuring preconditioners for the h-p fem mortar in 2d. In preparation.

C. Schwab, p- and hp-Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics. Numer. Math. Sci. Comput. Clarendon Press (1998). | MR | Zbl

P. Seshaiyer and M. Suri, Convergence results for non-conforming hp methods: The mortar finite element method. In vol. 218 of Contemp. Math. AMS (1998) 453–459. | MR | Zbl

P. Seshaiyer and M. Suri, Uniform hp convergence results for the mortar finite element method. Math. Comput. 69 (2000) 521–546. | DOI | MR | Zbl

B. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition, Vol. 17 of Lect. Notes Comput. Sci. Eng. Springer (2001). | MR | Zbl

Cited by Sources: