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Abstract. We build and analyze a substructuring preconditioner for the Mortar method, applied to
elliptic problems, in the h-p finite element framework. Particular attention is given to the construction
of the coarse component of the preconditioner in this framework, in which continuity at the cross
points is not required. Two variants are proposed: the first one is an improved version of a coarse
preconditioner already presented in [S. Bertoluzza and M. Pennacchio, Appl. Numer. Anal. Comput.
Math. 1 (2004) 434–454]. The second is new and is built by using a Discontinuous Galerkin interior
penalty method as coarse problem. A bound of the condition number is proven for both variants and
their efficiency and scalability is illustrated by numerical experiments.
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1. Introduction

Introduced in the early nineties by Bernardi et al. [10] as a tool to couple spectral and finite element method
for the solution of second order elliptic PDE’s, the mortar method has been quickly extended to treat many
different application fields [1, 7, 9, 27–29], turning out to be well suited for parallel implementation and to the
coupling of many different approximation spaces. The method has gained a wide popularity, since it offers
the possibility to use different, non matching, possibly heterogeneous discretizations in different regions of the
domain of definition of the problem at hand. However, in order to make such technique more competitive for
real life applications, one has to deal with the problem of the efficient solution of the associated linear system
of equations. The design of efficient preconditioners for such linear system is then a fundamental task. Different
approaches were considered in the literature: iterative substructuring [2], additive Schwarz with overlap [24],
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FETI-DP [18,22,23] and BDDC [25]. To the best of our knowledge, all these methods deal the h-version of the
Mortar FEM, and the explicit dependence on the polynomial degree relative to the FEM space considered has
never been analysed before.

Here we deal with the construction of preconditioners for the h-p Mortar Finite Element method. We start by
considering the approach proposed in the framework of conforming domain decomposition by Bramble et al. [15],
which has already been extended to the h version of the Mortar method by Achdou et al. [2]. In doing this we
will extend to the h-p version some tools that are common to the analysis of a wide range of substructuring
preconditioner. This approach consists in considering a suitable splitting of the nonconforming discretization
space in terms of “interior”, “edge” and “vertex” degrees of freedom and then using the related block-Jacobi
type preconditioners. While the “interior” and the “edge” blocks can be treated essentially as in the conforming
case, the treatment of the vertex block deserves some additional considerations.

Indeed, a problem that, in our opinion, has not until now been tackled in a satifactory way for the Mortar
method is the design of the coarse vertex block of the preconditioner (which is responsible for the good scaling
properties of the preconditioners considered). In fact, when building preconditioners for the Mortar method, we
have to deal with the fact that the coarse space depends on the fine discretization, via the the action of the
“Mortar projection operator”. Moreover, the design of such block is further complicated by the the presence of
multiple degrees of freedom at each cross point (we recall, in fact, that in the definition of the Mortar method,
continuity at cross points is not required). The solution considered in [2] is to use as a coarse preconditioner
the vertex block of the Schur complement. This is clearly not efficient, since it implies actually assembling at
least a block of the Schur complement (which is a task that we would like to avoid) and, for a high number of
subdomains, it is definitely not practically feasible. Here, we propose two different coarse preconditioners. The
first one is the vertex block of the Schur complement for a fixed auxiliary order one mesh with a small number
of degrees of freedom per subdomain. This idea was presented in Reference [13] for the case of linear finite
elements. We combine it, here, with a suitable balancing between vertex and edge component, yielding a better
estimate for the condition number of the preconditioned matrix. This alternative allows to avoid the need of
recomputing the coarse block of the preconditioner when refining the mesh. It still demands assembling a Schur
complement matrix (though starting from a coarse mesh) and it is therefore quite expensive, at least when
considering a large number of subdomains. In order to be able to tackle this kind of configuration, and obtain
a feasible, scalable method even in a massively parallel environment we propose here, as a further alternative,
to build the coarse preconditioner by giving up weak continuity and use, as a coarse preconditioner, a (non
consistent) Discontinuous Galerkin type interior penalty method defined on the coarse mesh whose elements are
the (quadrangular) subdomains. This approach turns out to be quite efficient even for a very a large number of
subdomains (as we show in the numerical tests section).

We applied the theoretical approach first presented in Reference [11], that allows to provide a much more
general analysis than [2, 15], to a model elliptic problem with continuity and coercivity constants of order one
(the generalisation to coefficients strongly varying across the interface being considered in Ref. [32]). For this
model problem, we were able to prove, for both choices of the coarse preconditioner, that the condition number
of the preconditioned matrix is bounded by a constant times

p3/2(1 + log
(
Hp2/h

)2
where H , h and p are the subdomain mesh-size, the fine mesh-size and the polynomial order respectively, (see
Cor. 4.2 and Thm. 4.5). Numerical experiments seem, however, to indicate that this bound is not optimal:
the condition number appears to behave in a polylogarithmic way, and there is no numerical evidence of the
presence of the factor p3/2. The same kind of behavior (loss of a power of p in the theoretical estimate that does
not appear in the numerical tests) was observed also for the first error estimates for the h-p Mortar method [35].
Such estimate was then improved by applying an interpolation argument [8] that, unfortunately, cannot be
applied for the type of bound that we are considering. The factor p3/2 in the theoretical estimate derives from
the boundedness estimates for the Mortar projector (2.33) and (2.34), which were shown to be sharp in [34]. We
observe that the norm of such projection operator also comes into play in the analysis of other preconditioners
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(like, for instance, the FETI method) so that a generalization of the related theoretical estimates to the h-p
version would also suffer of the loss of a factor p3/2.

The paper is organized as follows. The basic notation, functional setting and the description of the Mortar
method are given in Section 2. Some technical tools required in the construction and analysis of the proposed
preconditioners are revised in the same Section. The substructuring preconditioner is introduced and analyzed
in Section 3 whereas two different choices for the vertex block of the preconditioner are presented in Section 4.
Numerical experiments are presented in Section 5.

We are interested here in explicitly studying the dependence of the estimates that we are going to prove on
the number and size of the subdomains and on the degree of the polynomial used. To this end, in the following
we will employ the notation A � B (resp. A � B) to say that the quantity A is bounded from above (resp.
from below) by cB, with a constant c independent of �, of the H�’s, as well as of any mesh size parameter and
of the polynomial degree p�. The expression A � B will stand for A � B � A.

2. The Mortar method.

Let us at first recall the definition of the Mortar method, see e.g. [36] and the literature therein. For simplicity
we will consider the following simple model problem (though the results that we present here will very easily
extend to a more general situation): letting Ω ⊂ R

2 be a polygonal domain and given f ∈ L2(Ω), find u
satisfying

−
2∑

i,j=1

∂

∂xj

(
aij(x)

∂u

∂xi

)
= f in Ω, u = 0 on ∂Ω. (2.1)

We assume that for almost all x ∈ Ω the matrix a(x) = (aij(x))i,j=1,2 is symmetric positive definite, with
smallest eigenvalue α̌(x) ≥ α > 0 and largest eigenvalue α̂(x) ≤ α′, where α̌ and α̂ are positive constants
independent of x, which we assume to be of order one.

In order to discretize the above problem, we start by considering a decomposition of Ω as the union of L non
overlapping subdomains Ω�,

Ω =
⋃

� =1,...,L

Ω�. (2.2)

We assume that each subdomain Ω� satisfies the following assumption: there exist orientation preserving affine
mappings F� : x ∈ [0, 1]2 → F�(x) = B�x + b� with B� and invertible 2 × 2 matrix and b� a vector of R

2 such
that

H−1
� ‖B�‖ � 1, H�‖B−1‖ � 1, (2.3)

where ‖ · ‖ stands for the matrix norm associated to the Euclidean norm in R
2, and where H� is the diameter

of the subdomain Ω�.
We set

Γ �n = ∂Ωn ∩ ∂Ω�, S = ∪Γ �n (2.4)

and we denote by γi
� (i = 1, . . . , 4) the ith side of the �th domain:

∂Ω� =
4⋃

i=1

γ̄i
�.

Here we deal with the case of a geometrically conforming decomposition: each edge γi
� coincides with Γ�n for

some n. The extension to the case of a geometrically non-conforming decomposition will be considered in future
works.
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Remark 2.1. The assumption that the subdomains Ω� are quadrangles obtained from the unit square via an
affine mapping satisfying (2.3) can be relaxed into asking that they are the union of a small number of shape
regular triangles or quadrangles of diameter H�. All the arguments in this paper can be adapted quite easily to
cover such a case, with the notable exception of the ones related to the construction and implementation of the
DG coarse preconditioner, and in particular to the evaluation of the bilinear form (4.10), which will have to be
modified. In such a case, a VEM [6] based approach can be considered.

Remark 2.2. In this paper we assume the coercivity and continuity constants α̌ and α̂ to be of order one.
Clearly, if this is not the case, the constants in the estimates that we present here will explode when α′/α goes to
infinity. By suitably weighting the different components that add up to form the preconditioner that we proposed,
it is possible (see [32]) to extend it to the case where we only ask that, for each �, minx∈Ω�

α̌(x) � maxx∈Ω�
α̂(x).

This will for instance allow for large jumps in the coefficients of (2.1), provided such jumps are aligned with the
interface.

Functional spaces.

Let us at first introduce the necessary functional setting. For Ω̂ any domain in R
d, d = 1, 2 we introduce the

following unscaled norms and seminorms (with 0 < s < 1):

‖û‖2
0,Ω̂

=
∫

Ω̂

|û|2, |û|2
1,Ω̂

=
∫

Ω̂

|∇u|2, |û|s,Ω̂ =
∫

Ω̂

dx

∫
Ω̂

dy
|û(x) − û(y)|2
|x − y|d+2s

·

We then introduce the following suitably scaled norms and seminorms: for two dimensional entities

‖u‖2
H1(Ω�)

= H−2
�

∫
Ω�

|u|2 dx +
∫

Ω�

|∇u|2 dx, |u|2H1(Ω�)
=
∫

Ω�

|∇u|2 dx, (2.5)

and for one dimensional entities (γ being either γi
� or ∂Ω�)

|η|2Hs(γ) = H2s−1
�

∫
γ

∫
γ

|η(x) − η(y)|2
|x − y|2s+1

dxdy, s ∈ (0, 1) (2.6)

‖η‖2
L2(γ) = H−1

�

∫
γ

|η|2 ds, ‖η‖2
Hs(γ) = |η|2Hs(γ) + ‖η‖2

L2(γ), s ∈ (0, 1). (2.7)

Remark that the above norms are defined in such a way that they are scaling invariant, that is they are preserved
when Ω� is rescaled to the reference domain ]0, 1[2.

In the following for γi
� edge of Ω� we will also make explicit use of the spaces Hs

0(γi
�) and H

1/2
00 (γi

�), which
are defined as the subspaces of those functions η of Hs(γi

�) (resp. H1/2(γi
�)) such that the function η̂ defined as

η̂ = η on γi
� and η̂ = 0 on ∂Ω� \ γi

� belongs to Hs(∂Ω�) (resp. to H1/2(∂Ω�)). The spaces Hs
0(γi

�) and H
1/2
00 (γi

�)
are endowed with the norms

‖η‖Hs
0(γi

�)
= ‖η̂‖Hs(∂Ω�) ‖η‖

H
1/2
00 (γi

�)
= ‖η̂‖H1/2(∂Ω�).

Let the spaces X and T be defined as

X =
L∏

� =1

{u� ∈ H1(Ω�)| u� = 0 on ∂Ω ∩ ∂Ω�}, T =
L∏

� = 1

H
1/2
∗ (∂Ω�), (2.8)

where H
1/2
∗ (Ω�) is defined by

H
1/2
∗ (∂Ω�) = H1/2(∂Ω�) if |∂Ω� ∩ ∂Ω| = 0
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and
H

1/2
∗ (∂Ω�) = H

1/2
00 (∂Ω� \ ∂Ω)

otherwise.

Discretizations.

We consider for each � a family K�
h of compatible shape regular decompositions of Ω�, each made of open

elements K, which, to fix the ideas, we assume to be triangular (the extension to quadrilateral elements being
trivial), and we let hK denote the diameter of K. We choose, for each element K, a polynomial degree pK , and
we let X�

h ⊂ H1(Ω�) be the finite element space of order pK in each K, defined on the decomposition K�
h and

satisfying an homogeneous boundary condition on ∂Ω ∩ ∂Ω�:

X�
h = {v ∈ C0(Ω�) s.t. v|K ∈ PpK (K), K ∈ K�

h} ∩ H1
0 (Ω),

where Pq(K) stands for the space of polynomials of degree at most q in K. We do not assume that the meshes are
quasi uniform but that they are regular in shape and graded in the following sense: there exists two constants ρ
and θ independent of the hK ’s and of the pK ’s, such that for any neighbouring elements K, K ′ it holds:

ρ−1 ≤ hK

hK′
≤ ρ, |pK − pK′ | ≤ θ. (2.9)

The analysis of the preconditioners that we will consider will mainly rely on inverse inequalities, therefore it
will be convenient to introduce the following notation:

h� = min
K∈K�

h

hK p� = max
K∈K�

h

pK (2.10)

and
h = min

�
h� p = max

�
p� H = max

�
H�.

We set
T �

h = X�
h|∂Ω�

, (2.11)

and, for each edge γi
� of the subdomain Ω�, we define

T �,i = {η : η is the trace on γi
� of some u� ∈ X�

h } (2.12)

T �,i
0 = {η ∈ T �,i : η = 0 at the extrema of γi

�}. (2.13)

Finally, we set

Xh =
L∏

� =1

X�
h ⊂ X, Th =

L∏
� = 1

T �
h ⊂ T. (2.14)

On X and T we introduce the following broken norm and semi-norm:

‖u‖X =

(
L∑

� =1

‖u‖2
H1(Ω�)

) 1
2

, |u|X =

(
L∑

� = 1

|u|2H1(Ω�)

) 1
2

, (2.15)

‖η‖T =

(
L∑

� =1

‖η�‖2
H1/2(∂Ω�)

)1/2

|η|T =

(
L∑

� =1

|η�|2H1/2(∂Ω�)

)1/2

. (2.16)
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The spaces considered satisfy classical inverse inequalities (see e.g. [5,17,33]), which, in view of (4.10) and of
the scaling (2.5), take the form: for all η ∈ T 0

�,i and for all s, r �= 1/2 such that 0 ≤ s < r ≤ 1

‖η‖Hr
0 (γi

�)
� p

2(r−s)
�

(
h�

H�

)s−r

‖η‖Hs
0(γi

�)
, |η|Hr

0 (γi
�)

� p
2(r−s)
�

(
h�

H�

)s−r

|η|Hs
0 (γi

�)
, (2.17)

with constants independent of r, s. For s = 1/2 or r = 1/2 (2.17) holds with Hs
0 (resp. Hr

0 ) replaced by H
1/2
00 .

Mortar Problem

Let now a composite bilinear form aX : X×X−→R be defined as follows:

aX(u, v) =
∑

�

a�(u�, v�) with a�(u�, v�) =
∫

Ω�

∑
i,j

aij(x)
∂u�

∂xi

∂v�

∂ xj
dx. (2.18)

The bilinear form aX is clearly not coercive on X . In order to obtain a well posed problem we will then consider
proper subspaces of X , consisting of functions satisfying a suitable weak continuity constraint. For defining such
constraint, according to the Mortar method, we start by choosing for each segment Γ�n = γi

� = γj
n, one side (let

us say �) to be the slave side, while the other side will be the master side. The skeleton S can be decomposed as

S =
⋃

γi
�

slave side

γi
� =

⋃
γj

n master side

γj
n.

For each slave side γi
�, a multiplier space M �,i is defined by suitably modifying the corresponding trace

space T �,i. Letting ek, k = 0, . . . , N denote the elements of the one dimensional mesh induced on γi
� by K�

h

(with e0 and eN extremal elements), we observe that T �,i will take the form

T �,i = {η ∈ C0(γi
�) : η|ek

∈ Ppk
(ek), k = 0, . . . , N}.

The multiplier space will be obtained by reducing by one the polynomial degree at the extremal elements:

M �,i = {η ∈ C0(γi
�) : η|ek

∈ Ppk
(ek), 0 < k < N, η|e0 ∈ Pp0−1(e0), η|eN ∈ PpN−1(eN )}.

Remark that dim(M �,i) = dim(T �,i
0 ). We set:

Mh = {η ∈ L2(S), ∀γi
� slave side, η|

γi
�

∈ M �,i}. (2.19)

The constrained approximation and trace spaces Xh and Th are then defined as follows:

Xh =
{

vh ∈ Xh,

∫
S
[vh]λds = 0, ∀λ ∈ Mh

}
, (2.20)

Th =
{

η ∈ Th,

∫
S
[η]λds = 0, ∀λ ∈ Mh

}
, (2.21)

where, on γi
� = γj

n, γi
� slave side, we set [η] = η� − ηn.

We can now introduce the following discrete problem:

Problem 2.3. Find uh ∈ Xh such that for all vh ∈ Xh

aX(uh, vh) =
∫

Ω

fvh dx. (2.22)

It is known that Problem 2.3 admits a unique solution uh. For an error estimate, see [8].
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Classical bounds and technical tools

With the chosen scaling, several classical bounds hold with constants independent of H�. In particular we
have:

Poincaré type inequalities.

For all η with
∫

γ η ds = 0, γ being either γi
� or ∂Ω�, it holds that

‖η‖Hs(γ) � |η|Hs(γ). (2.23)

Injection of Hs in Hs
0 for s < 1/2.

We recall that for s < 1/2 the spaces Hs(γi
�) and Hs

0(γi
�) coincide as sets and have equivalent norms. However,

the constants in the norm equivalence goes to infinity as s tends to 1/2. For all ϕ ∈ H1/2(γi
�) the following

bound can be shown (see [12]): for β ∈ R arbitrary it holds that

|ϕ|Hs
0 (γi

�)
� 1

1/2 − s
‖ϕ − β‖H1/2(γi

�)
+

1√
1/2 − s

|β|. (2.24)

If ϕ is linear, bound (2.24) can be improved to

|ϕ|Hs
0 (γi

�)
� 1√

1/2 − s
(‖ϕ − β‖H1/2(γi

�)
+ |β|). (2.25)

We now revise some technical tools that will be required in the construction and analysis of our preconditioner.
For the reader’s convenience we report the following two results, which are a generalisation to the hp-version of
(Lems. 3.1 and 3.4 in [11,15] respectively) and of (Lem. 3.5 in [15]), and they can be easily proven by adapting
the proof in [11] which essentially relies on inverse inequalities analogous to (2.17) and on properties (2.24)
and (2.25) (see also [21]).

Lemma 2.4. The following bound holds: for all ξ ∈ T �
h such that ξ(P ) = 0 for some P ∈ γ̄, γ being either γi

�

or ∂Ω�, it holds

‖ξ‖2
L∞(γ) �

(
1 + log

(
H�p

2
�

h�

))
|ξ|21/2,γ . (2.26)

Lemma 2.5. Let ξ ∈ T �
h vanishing at all vertices of Ω�, and let ζL ∈ H1/2(∂Ω�), ζL linear on each edge of Ω�.

Then it holds
4∑

i=1

‖ξ‖2

H
1/2
00 (γi

�)
�
(

1 + log
(

H�p
2
�

h�

))2

|ξ + ζL|2H1/2(∂Ω�)
. (2.27)

Finally, the following lemma holds.

Lemma 2.6. Let σ : R
L × R

L → R be defined as

σ(α, β) =
∑

�,n:|Γ�n|>0

(α� − αn)(β� − βn). (2.28)

For η ∈ T let η̄ ∈ R
L be defined by

η̄ = (η̄�)� =1,...,L, η̄� = |∂Ω�|−1

∫
∂Ω�

η� ds. (2.29)

Then, if η ∈ T verifies ∫
γi

�

[η] ds = 0, ∀γi
� slave side, (2.30)
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we have

σ(η̄, η̄) �
(
1 + log

(
Hp2

h

))
|η|2T . (2.31)

Proof. For � = 1, . . . , L, i = 1, . . . , 4 and for η ∈ T let

η̄i
� =

1
|γi

�|

∫
γi

�

η� ds.

For η satisfying (2.30) and Γ�n = γi
� = γj

n, we have η̄i
� = η̄j

n. We can then introduce a single constant η̄�n,
depending only on � and n, defined as

η̄�n = η̄i
� = η̄j

n.

Then we have

σ(η̄, η̄) =
∑

�,n:|Γ�n|>0

|η̄� − η̄�n − (η̄n − η̄�n)|2 �
∑

�

∑
n:|Γ�n|>0

|η̄� − η̄�n|2

=
∑

�

∑
i∈E�

|η̄� − η̄i
� + η�(x�

i) − η�(x�
i)|2

�
∑

�

∑
i∈E�

|η�(x�
i) − η̄�|2 +

∑
�

∑
i∈E�

|η�(x�
i) − η̄i

�|2,

where, for each �, we let E� = {i : γi
� is an interior edge} and where x�

i , i = 1, . . . , 4 are the vertices of the
subdomain, which are ordered in such a way that x�

i is a vertex of γi
�.

We have
|η̄� − η�(x�

i)|2 � ‖η� − η̄�‖2
L∞(∂Ω�)

.

We observe that
∫

∂Ω�
η� − η̄� = 0, which, since η� − η̄� ∈ C0(∂Ω�), implies that η� − η̄� vanishes at some point

of ∂Ω�. We can then apply bound (2.26), which yields

|η̄� − η�(x�
i)|2 �

(
1 + log

(
H�p

2
�

h�

))
|η�|21/2,∂Ω�

.

The term |η�(x�
i) − η̄i

�|2 is bounded analogously. The thesis is obtained since the cardinality of the set E� is
bounded. �

The Mortar correction operator

For all slave side γi
�, we let πi

� : L2(γi
�)−→T �,i

0 be the bounded projector defined as∫
γi

�

(η − πi
�η)λ = 0, ∀λ ∈ M �,i. (2.32)

The projection πi
� is well defined and satisfies (see [34, 35]):

Theorem 2.7. There exists ρ0 ≥ 4 such that, if the grading parameter ρ verifies ρ < ρ0, then for γi
� slave side,

it holds:

‖πi
�η‖L2(γi

�)
� p

1
2
� ‖η‖L2(γi

�)
∀η ∈ L2(γi

�), (2.33)

|πi
�η|H1(γi

�)
� p� |η|H1(γi

�)
∀η ∈ H1

0 (γi
�). (2.34)
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Remark 2.8. The results are proven in [34] for a graded mesh with fixed polynomial degree. It is not particu-
larly difficult to verify that the proof holds essentially unchanged also for variable polynomial degree provided
condition (2.9) holds for ρ < ρ0 = minK∈K�

h
(pK + 1)2 and for any θ > 0.

Remark 2.9. The problem of whether (2.33) and (2.34) are optimal was studied in [34], where, through an
eigenvalue analysis the dependence on p to the power 1/2 and 1 of the norm of the projector appearing re-
spectively in (2.33) and (2.34) was confirmed. This dependence does not seem to affect the asymptotic rate
of the error, which, as observed in [34], seems to be only slightly suboptimal (loss of a factor C(ε)pε for ε
arbitrarily small). In [8] this good behavior of the error was proven, for sufficiently smooth solutions, thanks to
an interpolation argument.

By space interpolation and using the Poincaré inequality we immediately get the following corollary

Corollary 2.10. For all s, 0 < s < 1, s �= 1/2, for all η ∈ Hs
0(γi

�) we have

|πi
�η|Hs

0 (γi
�)

� p
(1+s)/2
� |η|Hs

0 (γi
�)

, (2.35)

uniformly in s. For all η ∈ H
1/2
00 (γi

�) we have

|πi
�η|H1/2

00 (γi
�)

� p
3/4
� |η|

H
1/2
00 (γi

�)
. (2.36)

We now define a global linear operator

πh :
L∏

� =1

L2(∂Ω�)−→
L∏

� =1

L2(∂Ω�)

as follows: for η = (η�)� =1,...,L ∈ Π�L
2(∂Ω�), we set πh(η) = (η∗

� )� = 1,...,L, where η∗
� ∈ T �

h is defined on slave
sides as πi

� applied to the jump of η, while it is set identically zero on master sides and on the external boundary
∂Ω: on γi

� = γj
n, (� slave side, n master side)

η∗
� |γi

�
= πi

�([η]|γi
�
), η∗

n|γi
�

= 0,

and for all �

η∗
� = 0 on ∂Ω� ∩ ∂Ω.

The following bound holds.

Lemma 2.11. For all η = (η�)� = 1,...,L ∈ T and for all α = (α�)� =1,...,L ∈ R
L, it holds

|πh(η)|2T � p3/2

(
1 + log

(
Hp2

h

))2

‖η − α‖2
T + p3/2

(
1 + log

(
Hp2

h

))
σ(α, α) (2.37)

with σ defined by (2.28). If, in addition, each η� is linear on each γi
�, then the bound can be improved to

|πh(η)|2T � p3/2

(
1 + log

(
Hp2

h

))(
‖η − α‖2

T + σ(α, α)
)
. (2.38)
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Proof. We have

|πh(η)|2T �
∑

γi
� slave side

|πi
�([η])|2

H
1/2
00 (γi

�)
�

∑
γi

� slave side

H2ε
� p4ε

� h−2ε
� |πi

�([η])|2
H

1/2−ε
0 (γi

�)
�

� p3/2
∑

γi
� slave side

h−2ε
� H2ε

� p4ε
� |[η]|2

H
1/2−ε
0 (γi

�)
.

We now observe that, for γi
� slave side and γj

n corresponding master side, (2.24) with β = α� − αn yields

|[η]|2
H

1/2−ε
0 (γi

�)
� 1

ε2
‖[η − α]‖2

H1/2(γi
�)

+
1
ε
|α� − αn|2. (2.39)

Then we have

|πh(η)|2T � p3/2 H2εp4ε

h2ε

⎛⎝ 1
ε2

∑
γi

� slave side

‖[η − α]‖2
H1/2(γi

�)
+

1
ε
σ(α, α)

⎞⎠ .

Observing that,
‖[η − α]‖2

H1/2(γi
�)
≤ ‖η� − α�‖2

H1/2(γi
�)

+ ‖ηn − αn‖2
H1/2(γi

�)
,

and by choosing ε = 1/ log(Hp2/h), we get (2.37). The bound (2.38) is obtained by noting that, if each η� is
linear on each γi

�, thanks to (2.25), the bound (2.39) can be improved to

|[η]|2
H

1/2−ε
0 (γi

�)
� 1

ε
(‖[η − α]‖2

H1/2(γi
�)

+ |α� − αn|2). �

Finally, by observing that

|(1− πh)(η)|2T � |η|2T + |πh(η)|2T = |η − α|2T + |πh(η)|2T � ‖η − α‖2
T + |πh(η)|2T

with 1 denoting the identity operator, we easily obtain the following corollary.

Corollary 2.12. For all η = (η�)� = 1,...,L ∈ T and for all α = (α�)� =1,...,L ∈ R
L, it holds

|(1− πh)(η)|2T � p3/2

(
1 + log

(
Hp2

h

))2

‖η − α‖2
T + p3/2

(
1 + log

(
Hp2

h

))
σ(α, α) (2.40)

with σ defined by (2.28). If, in addition, each η� is linear on each γi
�, then the bound can be improved to

|(1− πh)(η)|2T � p3/2

(
1 + log

(
Hp2

h

))(
‖η − α‖2

T + σ(α, α)
)
. (2.41)

3. Substructuring preconditioners for the Mortar method

The main idea of substructuring preconditioners consists in splitting the functions u ∈ Xh as the sum of
three suitably defined components: u = u0 + uE + uV identified respectively by interior degrees of freedom
(corresponding to basis functions vanishing on the skeleton and supported on one subdomain), edge degrees of
freedom, and vertex degrees of freedom, and consider preconditioners that, when expressed in a basis related to
such a splitting, are block diagonal.

More precisely, we start as usual by introducing the discrete lifting operator Rh : Th → Xh defined as follows.
For η = (η�)� =1,...,L ∈ Th we let Rhη = (R�

hη�)� =1,...,K ∈ Xh with R�
hη� ∈ X�

h solution of

R�
hη� = η� on ∂Ω�, a�(R�

hη�, v
�
h) = 0, ∀vh ∈ X�

h ∩ H1
0 (Ω�).
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It is immediate to check that the spaces Xh of unconstrained functions and Xh of constrained functions can
be split as direct sums of an interior and of a (respectively unconstrained or constrained) trace component:

Xh = X 0
h ⊕ Rh(Th), Xh = X 0

h ⊕ Rh(Th), (3.1)

with

X 0
h =

L∏
� =1

X�
h ∩ H1

0 (Ω�).

We can easily verify that for w = w0 + Rhη, v = v0 + Rhζ (with w0, v0 ∈ X 0
h )

aX : Xh × Xh → R satisfies

aX(w, v) = aX(w0, v0) + aX(Rhη, Rhζ) := aX(w0, v0) + s(η, ζ), (3.2)

where the discrete Steklov−Poincaré operator s : Th × Th → R is defined by

s(ξ, η) :=
∑

�

a�(R�
hξ�, R

�
hη�). (3.3)

Finally, it is well known that

‖R�
hη�‖H1(Ω�) � ‖η�‖1/2,∂Ω�

, |R�
hη�|H1(Ω�) � |η�|1/2,∂Ω�

. (3.4)

see [5, 35], whence
‖Rhη‖X � ‖η‖T , |Rhη|X � |η|T . (3.5)

The following result for the Steklov–Poincaré operator follows easily from the definition of s(·, ·), the continuity
and coercivity of aX(·, ·) and (3.5).

Corollary 3.1. For all ξ ∈ Th, it holds
s(ξ, ξ) � |ξ|2T . (3.6)

The problem of preconditioning the matrix A associated to the discretization of aX , reduces to finding good
preconditioners for the matrices A0 and S corresponding respectively to the bilinear forms aX restricted to X 0

h

and to s. Here we assume that we have good preconditioners for the stiffness matrix A0 and we concentrate
therefore only on the discrete Steklov−Poincaré operator s.

We start by observing that the space of constrained trace functions Th defined in (2.21) can be further split
as the direct sum of vertex and edge spaces. More specifically, if we denote by L the space

L = {(η�)� =1,...,L, η� ∈ C0(∂Ω�) is linear on each edge of Ω�}, (3.7)

then we can define the space of constrained vertex functions as

T V
h = (1 − πh)L. (3.8)

We observe that L ⊂ Th, which yields T V
h ⊂ Th. We then introduce the space of constrained edge functions

T E
h ⊂ Th defined by

T E
h = {η = (η�)� = 1,...,L ∈ Th, η�(x�

i) = 0, i = 1, . . . , 4} (3.9)

and we can easily verify that
Th = T V

h ⊕ T E
h . (3.10)

Moreover it is quite simple to check that a function in T E
h is uniquely defined by its value on master edges, the

value on slave edges being forced by the constraint.
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It will be useful in the following to introduce the linear interpolation operator Λ : Th → L defined as

Λη = (Λ�η�)� =1,...,L, Λ�η�(x�
i) = η�(x�

i), i = 1, . . . , 4,

(where, we recall, x�
i , i = 1, . . . , 4 are the four vertices of the subdomain Ω�). Observe that for η ∈ Th we have

ηV = (ηV
� )� =1,...,L = (1 − πh)Λη ∈ T V

h and ηE = (ηE
� )� =1,...,L = η − (1− πh)Λη ∈ T E

h .

The following Lemma can be proven exactely as the analogous result in [11] (see also [21]).

Lemma 3.2. For all η = (η�)� =1,...,L ∈ Th, it holds

|Λη|2T �
(
1 + log

(
Hp2

h

))
|η|2T , ‖Λη‖2

T �
(
1 + log

(
Hp2

h

))
‖η‖2

T (3.11)

The preconditioner that we consider is built by introducing two bilinear forms:

bE : T E
h × T E

h → R and bV : T V
h × T V

h → R.

Let us start by introducing the bilinear form relative to the edges: for any master side γj
n, let bn,j :

T n,j
0 ×T n,j

0 −→R be a symmetric bilinear form satisfying, for all η ∈ T n,j
0

bn,j(η, η) � ‖η‖2

H
1/2
00 (γj

n)
. (3.12)

Then, the block diagonal bilinear form bE : T E
h ×T E

h −→R is defined by

bE(η, ξ) =
∑

γj
n master side

bn,j(ηn, ξn). (3.13)

Applying Lemma 2.5 we easily get

bE(ηE , ηE) �
(
1 + log

(
Hp2

h

))2

s(η, η). (3.14)

Moreover, using the fact that ηE verifies the weak continuity constraint and thar ηE
� vanishes at the cross points

we immediately get that for γi
� slave side and γj

n corresponding master side we have ηE
� |γi

�
= πi

�(η
E
n |γj

n
) and,

by (2.36),
|ηE

� |2
H

1/2
00 (γi

�)
� p3/2|ηE

n |2
H

1/2
00 (γj

n)
,

which allows us to write

|ηE |2T �
∑

γj
n master side

|ηE
n |2

H
1/2
00 (γj

n)
+

∑
γi

� slave side

|ηE
� |2

H
1/2
00 (γi

�)
(3.15)

� p3/2
∑

γj
n master side

|ηE
n |2

H
1/2
00 (γj

n)
� p3/2bE(ηE , ηE). (3.16)

The construction of the vertex block of the preconditioner in the Mortar method framework is not standard,
since we need to take into account the weak continuity constraint. In the P1 framework, Achdou, Maday,
Widlund in [2], propose to use

bV
0 (ηV , ζV ) = s(ηV , ζV ). (3.17)
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This choice immediately yields the bound

s(η, η) � bV
0 (ηV , ηV ) + p3/2bE(ηE , ηE).

Let us bound bV
0 (ηV , ηV ) in terms of s(η, η). Let η̄ = (η̄�)� =1,...,L be defined as in (2.29). Using (2.41), we

can write

bV
0 (ηV , ηV ) � |(1− πh)Λη|2T � p3/2

(
1 + log

(
Hp2

h

))(
‖Λ(η − η̄)‖2

T + σ(η̄, η̄)
)
.

(where we used that Λη̄ = η̄). Now, thanks to a Poincaré inequality, Lemmas 3.2 and 2.6, we obtain

bV
0 (ηV , ηV ) � p3/2

(
1 + log

(
Hp2

h

))2

|η|2T .

Then we have

bV
0 (ηV , ηV ) + p3/2bE(ηE , ηE) � p3/2

(
1 + log

(
Hp2

h

))2

s(η, η).

This bound would suggest to choose, as a preconditioner for the matrix S, the matrix P0 corresponding to
the bilinear form

s0(η, ζ) = bV
0 (ηV , ζV ) + p3/2bE(ηE , ζE).

With this choice we would have the bound

Cond(P−1
0 S) � p3/2

(
1 + log

(
Hp2

h

))2

·

4. The vertex block of the preconditioner

Building the vertex block of the preconditioner according to (3.17) implies assembling at least a portion of
the Schur complement matrix S. This turns out to be too expensive, in particular when fine meshes, high order
approximations and large number of subdomains are involved. First, the number of local Schur subdomain solves
is proportional to the number of interior subdomain vertices and their respective computational cost depend on
the local grid size and polynomial order. Second, the communication cost scales with the local number of Schur
degrees of freedom. In the present section we therefore propose two more efficient alternatives.

4.1. A “coarse” vertex block preconditioner

The first option that we considered is to build the vertex block of the preconditioner using a fixed auxiliary
coarse mesh, independent of the space discretization and of the polynomial degree. This idea was presented
in [13] for the case of P1 finite elements. We combine it here with a suitable balancing between vertex and edge
component, yielding a better estimate for the condition number of the preconditioned matrix.

Let nc be a fixed small integer (to fix the ideas, in all our tests we have nc = 3). We build coarse auxiliary
quasi-uniform triangular meshes K�

δ with mesh size δ� = H�

nc
. We do not assume that K�

δ and K�
h are nested. We

define a coarse auxiliary P1 discretization spaces X�
δ ⊂ H1(Ω�) ∩ C0(Ω̄�) defined by

X�
δ = {v ∈ C0(Ω̄�) s.t. v|K ∈ P1(K), K ∈ T �

δ } ∩ H1
0 (Ω).

For each γi
� slave side we also consider the corresponding auxiliary multiplier space M �,i

δ ⊂ L2(γi
�), defined

analogously to (2.19).

The spaces Xδ, Mδ, Xδ, and T �
δ , Tδ, Tδ are built starting from the X�

δ ’s and the M �,i
δ ’s in the same way as

the spaces Xh, Mh, Xh and T �
h, Th, Th by using definitions similar to (2.12), (2.13), (2.14), (2.19) and (2.20).
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Analogously to πh we can define the operator πδ :
∏L

� =1 L2(∂Ω�)−→Tδ. Using Lemma 2.11 we obtain for all
η ∈ T and α = (α�)� =1,...,L ∈ R

L

|(1 − πδ)η|2T � ‖η − α‖2
T + σ(α, α), (4.1)

and for η ∈ L

|(1 − πδ)η|2T � ‖η − α‖2
T + σ(α, α). (4.2)

Moreover, Lemma 3.2 yields that for all η ∈ Tδ

|Λη|2T � |η|2T . (4.3)

Clearly, the constants in the inequalities (4.1), (4.2) and (3.2) depend on nc, which is however a fixed small
number, independent of the h�’s, the H�’s and the p�’s, and that we can, therefore, consider as a constant.

Analogously to R�
h we can define a local coarse lifting operator R�

δ. By standard arguments this verifies, for
all η ∈ Tδ,

‖Rδη‖X � ‖η‖T , |Rδη|X � |η|T . (4.4)

We define the vertex block of the preconditioner as bV
1 : T V

h × T V
h → R as

bV
1 (ηV , ξV ) :=

∑
�

∫
Ω�

a(x)∇(R�
δ(1− πδ)ΛηV ) · ∇(R�

δ(1 − πδ)ΛξV ) dx. (4.5)

The second preconditioner we propose is then:

s1 : Th×Th−→R

s1(η, ξ) = bE(ηE , ξE) +
(
1 + log

(
Hp2

h

))
bV
1 (ηV , ξV ). (4.6)

Remark that (1 − πδ)ΛT V
h = T V

δ . In view of this identity it is not difficult to realize that computing the
vertex block of this preconditioner only implies assembling the Schur complement matrix for the auxiliary
Mortar problem corresponding to the fixed coarse discretization. This operation is then totally independent of
the mesh size h. More details will be given in the next section.

The following theorem holds:

Theorem 4.1. For all η ∈ Th we have:

p−3/2s(η, η) � s1(η, η) �
(
1 + log

(
Hp2

h

))2

s(η, η). (4.7)

Proof. By using (3.15) we get

s(η, η) � |ηE |2T + |ηV |2T � p3/2bE(ηE , ηE) + |ηV |2T . (4.8)

Let now ηV,δ = (ηV,δ
� )� =1,...,L = (1− πδ)Λη. We observe that ηV = (1− πh)ΛηV,δ. We also observe that since

both Mh and Mδ contain the functions constant on each γi
�, we have that on each edge γi

� = γj
n (with γi

� slave
side) the integral of ηV,δ

� , ηV,δ
n , ηV

� and ηV
n are all equals, since they coincide with the integral of ΛnηV

n = ΛnηV,δ
n .

This implies that the integral on ∂Ω� of ηV,δ
� and of ηV

� coincide. We can then introduce η̄ = (η̄�)� = 1,...,L ∈ R
L

with
η̄� = |∂Ω�|−1

∫
∂Ω�

ηV,δ
� ds = |∂Ω�|−1

∫
∂Ω�

ηV
� ds.
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Using Corollary 2.12 and (4.3), as well as (2.23), we have (Λη̄ = η̄)

|ηV |2T = |(1− πh)ΛηV,δ|2T � p3/2

(
1 + log

(
Hp2

h

))(
‖Λ(ηV,δ − η̄)‖2

T + σ(η̄, η̄)
)

� p3/2

(
1 + log

(
Hp2

h

))(
‖ηV,δ − η̄‖2

T + |ηV,δ|2T
)

� p3/2

(
1 + log

(
Hp2

h

))
|ηV,δ|2T

� p3/2

(
1 + log

(
Hp2

h

))
bV
1 (ηV , ηV ).

Then we have

s(η, η) � |ηE |2T + |ηV |2T � p3/2bE(ηE , ηE) + p3/2

(
1 + log

(
Hp2

h

))
bV
1 (ηV , ηV ) = p3/2s1(η, η),

that is the first part of the theorem.
Let us now bound s1(η, η) in terms of s(η, η). Using (4.2), Lemmas 3.2 and 2.6, and (2.23) we obtain

bV
1 (ηV , ηV ) � |(1− πδ)Λη|2T � (‖Λ(η − η̄)‖2

T + σ(η̄, η̄))

�
(
1 + log

(
Hp2

h

))
|η|2T �

(
1 + log

(
Hp2

h

))
s(η, η).

Thanks to (3.14) and the definition (4.6) we get that

s1(η, η) = bE(ηE , ηE) +
(
1 + log

(
Hp2

h

))
bV
1 (ηV , ηV ) �

(
1 + log

(
Hp2

h

))2

s(η, η),

that concludes the proof of the Theorem 4.1. �

Let S and P1 be the matrices obtained by discretizing respectively s and s1 then, by using the lower and
upper bounds for the eigenvalues of P−1

1 S which are a direct consequence of Theorem 4.1, we obtain:

Corollary 4.2. The condition number of the preconditioned matrix P−1
1 S satisfies:

Cond(P−1
1 S) � p3/2

(
1 + log

(
Hp2

h

))2

. (4.9)

4.2. A discontinuous Galerkin vertex block preconditioner

As a further alternative, we propose to construct the vertex block of the preconditioner, by completely giving
up weak continuity and by using, instead, a Discontinuous Galerkin interior penalty method as coarse problem.

More precisely, letting H� : H1/2(∂Ω�) → H1(Ω�) denote the continuous harmonic lifting, we set

bV
#(ηV

� , ζV
� ) =

∑
�

a�(H�Λ�η
V ,H�Λ�ζ

V ), (4.10)

bV
[ ](η

V , ηV ) =
∑

γi
� slave side

|γi
�|−1

∫
γi

�

|[Λη]|2 ds. (4.11)

Then, as vertex block of the preconditioner, we consider:

bV
2 (η, η) = τ1 bV

#(ηV
� , ηV

� ) + τ2 bV
[ ](η

V
� , ηV

� ) (4.12)

with τ1, τ2 > 0 constants.
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The global preconditioner is then assembled as

s2(η, η) = bE(ηE , ηE) +
(
1 + log

(
Hp2

h

))
bV
2 (ηV , ηV ). (4.13)

We have the following theorem.

Theorem 4.3. For all η ∈ Th we have:

p−3/2s(η, η) � s2(η, η) �
(
1 + log

(
Hp2

h

))2

s(η, η). (4.14)

Proof. Thanks to Lemma 3.2 we have

bV
#(ηV , ηV ) � |Λη|2T �

(
1 + log

(
Hp2

h

))
|η|2T .

Let us then bound bV
[ ](η

V , ηV ). For each slave side γi
� and corresponding master side γj

n we introduce once
again the constants

η̄i
� =

1
|γi

�|

∫
γi

�

ηV
� ds η̄j

n =
1

|γj
n|

∫
γj

n

ηV
n ds

Thanks to the weak continuity constraint, we have that η̄i
� = η̄j

n.
Letting ai

� and bi
� denote the two extrema of γi

�, and observing that [Λη] coincides with [η] when evaluated
at ai

� and bi
�, then we can write

bV
[ ](η

V , ηV ) =
∑

γi
�

slave side

|γi
�|−1

∫
γi

�

|[Λη]|2 ds �
∑

γi
�

slave side

(|[η](ai
�)|2 + |[η](bi

�)|2).

Observing that for (n, j) such that γi
� = γj

n and for x ∈ γ̄i
� we have that

|[η](x)|2 = |η�(x) − ηn(x)|2 = |η�(x) − η̄i
� − (ηn(x) − η̄j

n)|2 � |η�(x) − η̄i
�|2 + |ηn(x) − η̄j

n|2,

we immediately obtain that

bV
[ ](η

V , ηV ) �
∑

�

4∑
i=1

|η�(x�
i) − η̄i

�|2,

where, once again, xi
�, � = 1, . . . , 4 denote the vertices of Ω�. Now, reasoning as in the proof of Lemma 2.6 we

obtain

|η�(x�
i) − η̄i

�|2 �
(
1 + log

(
Hp2

h

))
|η|2H1/2(∂Ω�)

.

Putting all together we obtain

bV
2 (ηV , ηV ) �

(
1 + log

(
Hp2

h

))
s(η, η). (4.15)

Combining (4.15), (3.14) with (4.13), we obtain

s2(η, η) �
(
1 + log

(
Hp2

h

))2

s(η, η).
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Let us now prove the reverse bound. We have

s(η, η) � |ηV |2T + |ηE |2T

and

|ηV |2T = |(1− πh)Λη|2T � |Λη|2T + |πhΛη|2T .

We bound the two terms on the right hand side separately. We have (see [26])

|Λη|2T �
∑

�

|H�Λ�η�|2H1(Ω�)
� bV

#(ηV , ηV ).

As far as the second term is concerned, proceeding as in the proof of Lemma 2.11 and using (2.25) with
ε = 1/ log(Hp2/h) we obtain

|πh(Λη)|2T � p3/2

(
1 + log

(
Hp2

h

)) ∑
γi

� slave side

‖[Λη]‖2
H1/2−ε(γi

�
).

Now we have (recall that ‖ · ‖L2(Γ�) is the scaled L2 norm defined in (2.7))

‖[Λη]‖2
H1/2−ε(γi

�)
� ‖[Λη]‖2

L2(γi
�)

+ |[Λη]|2H1/2(γi
�)

� |γi
�|−1

∫
γi

�

|[Λη]|2 ds,

where the last inverse type inequality is obtained by a scaling argument, using the linearity of Λη on γi
�.

Combining the bounds on the two contributions we obtain

s(ηV , ηV ) � p3/2

(
1 + log

(
Hp2

h

))
bV
2 (ηV , ηV ).

which finally yields
s(η, η) � p3/2s2(η, η). �

Remark 4.4. We observe that if the Ω�’s are rectangles, for η ∈ L we have that H�η� is the Q1 function
(polynomial of degree ≤1 in each of the two unknowns) coinciding with η� at the four vertices of Ω�. The local
matrix corresponding to the block bV

1 can then be replaced by the elementary Q1 stifness matrix for the problem
considered.

Let S and P2 be the matrices obtained by discretizing respectively s and s2 then, by using the lower and
upper bounds for the eigenvalues of P−1

2 S implicitly given by Theorem 4.3, we obtain:

Corollary 4.5. The condition number of the preconditioned matrix P−1
2 S satisfies:

Cond(P−1
2 S) � p3/2

(
1 + log

(
Hp2

h

))2

· (4.16)

5. Numerical results

In this section, we test the properties of the preconditioners previously proposed, by performing a p-, H- and
h-convergence study. We consider the model problem

−Δu = f in Ω =]0, 1[2, u = 0 on ∂Ω
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and, for all tests, we set f = 1. A geometrically conforming, domain decomposition of Ω in N = 2m × 2m

subdomains, m = 2, 3, 4, . . ., with a quasiuniform mesh of order n × n in each subdomain, is considered.
Let S be the matrix associated to the discrete Steklov–Poincaré operator s(·, ·) defined in (3.3) and let Ŝ be

the matrix obtained after the change of basis corresponding to switching from the standard nodal basis to the
basis related to the splitting (3.10). From now on, we focus on testing the efficiency of the preconditioners for
the transformed Schur complement system

Ŝ û = ĝ (5.1)

where the matrix Ŝ, after ordering of the indices as nodes lying on the edges and on the vertices, can be
written as:

Ŝ =
(

Ŝee Ŝev

ŜT
ev Ŝvv

)
.

The Preconditioned Conjugate Gradient (PCG) method, with a relative tolerance set equal to 10−6, was used
to solve the transformed Schur complement system (5.1). The condition number of the (preconditioned) Schur
complement matrix has been estimated as a byproduct of the Conjugate-Gradient method (see [20], Sects. 9.3,
10.2).

Remark 5.1. Of course the matrix Ŝ is never assembled within the solution procedure as only the computation
of its action on a given vector is needed.

It is beyond the scope of this paper to go into details on how the preconditionrd mortar method considered
in this paper can be efficiently implemented in a parallel framework. This issue will be thoroughly examined
in [32], where extensive tests will be presented aimed at evaluating the performance of the method. To give an
idea of its potential let us just mention that, in the biggest tests presented in this paper (corresponding to the
result presented on 6, last line, second to last column) we solved, using P2 as preconditioner, a discrete problem
on 40 000 cores, for p = 4 and h = 0.625e−4 in 23 iterations in under 3 min.

The preconditioner for Ŝ will be of block-Jacobi type: one block for each one of the master edges and an
additional block for the vertices.

For the edge block of the preconditioner, we need the matrix counterpart of (3.13). In the literature it is
possible to find different ways to build bilinear forms bE(·, ·) that satisfy (3.12) and (3.13). The choice we
followed here for defining bE(·, ·) is the one proposed in [15] and it is based on an equivalence result for the
H

1/2
00 norm, see [3, 14] for a detailed description of its construction. We denote by ηηηE the vector representation

of ηE ∈ T �,i
0 . Then it can be verified that, for each edgee γj

n, we have (see [14] p. 1110 and [19])

|ηE |2
H1/2(γj

n)
� (l1/2

0 ηE , ηE)γj
n

= ηηηET
K̂EηηηE ,

with K̂E = M1/2
E (M−1/2

E REM−1/2
E )1/2M1/2

E , where ME and RE are the mass and stiffness matrices associated
to the discretization of the operator −d2/ds2 (in T n,j

0 ) with homogeneous Dirichlet boundary conditions at the
extrema a and b of γi

�. Thus, the edge block of the preconditioner can be written as:

K̂ee =

⎛⎜⎜⎜⎝
K̂E1 0 0 0

0 K̂E2 0 0

0 0
. . . 0

0 0 0 K̂EM

⎞⎟⎟⎟⎠ (5.2)

with one block for each master edge where M is the number of masters.
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The preconditioner P1. Concerning the vertex block of our preconditioner, following Section 4.1, we introduce
a coarse auxiliary mesh in each subdomain made of 3 × 3 elements and we fix the polynomial order p = 1. Let
Ŝc be the matrix obtained after applying the change of basis to the associated Schur complement system. Ŝc

takes the form

Ŝc =

(
Ŝc
ee Ŝc

ve

Ŝc
ve

T
Ŝc
vv

)
. (5.3)

The preconditioner P1, described in Section 4.1, can then be written as:

P1 =
(

K̂ee 0
0 Pc

v

)
, with Pc

v =
(
1 + log

(
Hp2

h

))
Ŝc
vv. (5.4)

The Preconditioner P2. Let P# and P[ ] be the matrix counterparts of (4.10) and of (4.11) respectively
and let

PDG
v =

(
1 + log

(
Hp2

h

))
(τ1P# + τ2P[ ]).

Then the new preconditioner we propose is:

P2 =
(

K̂ee 0
0 PDG

v

)
. (5.5)

All the tests presented relate to τ1 = 1/10 and τ2 = 2. These values of τ1 and τ2 were obtained by trial-and-error
on small tests problems. Remark that the ratio between τ1 and τ2 is consistent with the choice that is usually
done in the framework of interior penalty DG methods.

In summary, the numerical tests relate the following two preconditioners for the transformed Schur comple-
ment system:

P1 =
(

K̂ee 0
0 Pc

v

)
and P2 =

(
K̂ee 0
0 PDG

v

)
· (5.6)

We report the condition number estimates of the preconditioned Schur complement matrix κ(P̂−1Ŝ) where
P̂ is either one of the preconditioners defined in (5.6), the number of iterations and the following two ratios:

R2 =
κ(P̂−1Ŝ)(

1 + log
(

Hp2

h

))2 R2p =
R2

p3/2
(5.7)

where H is the coarse mesh-size, h the fine mesh-size and p the polynomial order.

5.1. Computation platforms

For the implementation of the methodology described in this paper, we developed the code in C++11 using
the library Feel++ [30, 31], which allows for a wide variety of numerical methods including continuous and
discontinuous Galerkin methods from 1D to 3D and, of course, the Mortar method we are dealing with. Feel++
uses MPI for parallel computing and its data structures can be customized with respect to MPI communica-
tors, which allows to implement the various preconditioners presented in this paper. Finally linear algebra is
handled by PETSc both in sequential in the subdomains, and in parallel for the coarse preconditioner. The im-
plementation details as well as more extensive results with respect to strong and weak scalability are presented
in [32].

The simulations presented in the next sections were partly performed on hpc-login at MesoCen-
tre@Strasbourg. MesoCentre is a supercomputer with 288 compute nodes interconnected by an infiniband QDR
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1.1. Level 1 1.2. Level 2 1.3. Level 3

Figure 1. First three levels of refinements for unstructured triangular grids on a subdomain
partition made of 4 squares.

Table 1. Unpreconditioned system. Number of iterations required by PCG.

N\n 5 10 20 40 80 180 320
16 44 59 84 105 155 240 354
64 59 77 109 150 213 298 468
256 81 99 127 178 250 327 484

Table 2. Preconditioner P1. Number of iterations required by PCG.

N\n 5 10 20 40 80 180 320
16 26 27 28 31 33 34 36
64 24 27 29 31 33 35 36
256 21 23 25 28 30 33 35

network. The system is Scientific Linux based on Intel Xeon Ivy Bridge processors with 16 cores and 64GO of
RAM running at 2.6 Ghz. MesoCentre has a theoretical peak performance of 70 TFLOP/s. The simulations on a
large number of cores, 1024, 4096, 16 384, 22 500 and 40 000, were done on Curie at the TGCC, a TIER-0 system
which is part of PRACE. Curie has 5040 B510 bullx nodes and for each node a 2 eight-core Intel processors
Sandy Bridge cadenced at 2.7 GHz with 64 GB.

Linear elements. In the first set of experiments, we consider piecewise linear elements (p = 1), and compute
the estimated condition number when varying the number of subdomains and the mesh size. We split the domain
Ω in N = 4m subdomains, m = 2, 3, 4 with a quasiuniform mesh of order n×n in each subdomain. These results
were obtained on a sequence of triangular grids like the ones shown in Figure 1

In the conforming case, the condition number of S is known to behave (for p = 1) like (Hh)−1 [16]. In Table 1
we show the number of iterations required by the solution of the transformed Schur complement system without
preconditioning as a function of N and of n. We observe that this number roughly behaves like (Hh)1/2.

Table 2 shows the number of iterations to solve the system (5.1), preconditioned with P1, when increasing N
and n. Analogous results obtained with preconditioned P2 are reported in Table 3. As expected, a logarithmic
growth is clearly observed for both preconditioner P1 and P2, whereas, the number of iterations without
preconditioning shown in Table 1 has a strong increase as the mesh size h goes to zero, as expected from the
theoretical estimation of the condition number of Ŝ.

High-order elements. We now present some computations obtained with high-order elements. We run the
same set of experiments carried out for linear FEM, but now we increase the polynomial order p up to 5. To study
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Table 3. Preconditioner P2. Number of iterations required by PCG.

N\n 5 10 20 40 80 180 320
16 23 24 26 28 31 33 35
64 22 23 26 29 31 33 35
256 20 21 23 26 28 30 33

Table 4. Condition number estimate κ(Ŝ) and number of iterations (between parenthesis) for
n/N = 80.

N\p 1 2 3 4 5
16 155 256 344 444 533
64 213 330 468 613 765
256 250 356 495 631 787

1 2 3 4 5

102

103

p

λ(p)

κ(P1
−1Ŝ)-16

κ(P1
−1Ŝ)-64

κ(P1
−1Ŝ)-256

2.1. Preconditioner P1

1 2 3 4 5

102

103

p

λ(p)

κ(P2
−1Ŝ)-16

κ(P2
−1Ŝ)-64

κ(P2
−1Ŝ)-256

κ(P2
−1Ŝ)-1024

κ(P2
−1Ŝ)-4096

κ(P2
−1Ŝ)-16384

κ(P2
−1Ŝ)-22500

κ(P2
−1Ŝ)-40000

2.2. Preconditioner P2

Figure 2. Condition number of the preconditioned system as function of p with 16, 64, 256,
1024, 4096 subdomains and n/N = 80

the dependence on p of our preconditioners, we report the condition number estimate for the preconditioned
system, as function of p with H/h constant. For the sake of comparison, before showing the performance of our
preconditioners, we report in Table 4, for H/h � n/N = 80 constant and for increasing values of the polynomial
order p, the number of iterations required to solve system (5.1) without preconditioning.

Let the function λ be defined as λ(p) = p3/2(1 + log(
Hp2

h
))2. In Figure 2, we plot the condition number of

the transformed Schur system, preconditioned with P1 and P2, and λ(p) as function of p.
To highlight the dependence on p of our preconditioners, in Tables 5 and 6 we report, for n/N = 80 fixed and

for increasing values of the polynomial order p, the ratio R2 defined in (5.7). Higher values of p are considered
in Table 7 where the ratio R2 and the number of iterations are reported for n/N = 10 fixed and polynomial
order p ∈ [6, 14].

We remark that the dependence on the factor p3/2 of the condition number does not show up in these
numerical tests. Indeed, the numerical results seem to show an even better behaviour than the polylogarithmic
dependence on Hp2/h. In particular, in Table 5, for fixed H/h and p the ratio R2 seems to be slightly decreasing
rather than constant. This is not in contrast with the theory. In fact, it is well known that, within the conjugate
gradient iterations, the condition number estimate might be underestimated [4, 20].
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Table 5. Ratio R2 for n/N = 80, preconditioner P1 and increasing values of the polynomial
order p. Between parenthesis the number of iterations.

N\p 1 2 3 4 5
16 170(33) 114(31) 103(32) 0.96(33) 0.93(34)
64 167(33) 111(32) 1.0(34) 0.92(34) 0.90(34)
256 162(30) 109(31) 0.99(32) 0.93(33) 0.90(33)

Table 6. Ratio R2 for n/N = 80, preconditioner P2 and increasing values of the polynomial
order p. Between parenthesis the number of iterations. The results at 40 000 cores and p = 5
are not available.

N\p 1 2 3 4 5
16 165(31) 114(32) 106(33) 103(38) 102(39)
64 174(31) 121(33) 111(35) 107(40) 107(42)
256 176(28) 123(32) 112(34) 108(36) 106(40)
1024 178(27) 123(29) 112(31) 108(32) 106(34)
4096 179(25) 123(28) 112(29) 108(31) 106(31)
16 384 152(20) 0.88(22) 0.91(26) 0.94(27) 0.96(28)
22 500 152(19) 0.88(20) 0.69(22) 0.95(26) 0.99(27)
40 000 152(17) 0.88(20) 0.69(22) 0.68(23) 0.00(0)

Table 7. Ratio R2 for n/N = 10, preconditioner P2 and increasing values of the polynomial
order p ∈ [6, 14]. Between parenthesis the number of iterations.

N\p 6 8 10 12 14
16 1.03(30) 1.02(35) 1.04(36) 1.06(37) 1.07(38)
64 1.08(32) 1.07(37) 1.09(39) 1.10(40) 1.11(41)
256 1.09(29) 1.07(33) 1.07(35) 1.07(37) 1.08(38)

1,024 1.09(28) 1.07(28) 1.06(28) 1.06(29) 1.06(30)
4,096 1.09(26) 1.07(27) 1.06(28) 1.06(28) 1.06(29)

Nonmatching grids. The tests performed until now deal with decomposition with matching grid (though the
solution is non conforming, due to the lack of continuity at the cross points). We now turn to the case of non-
matching triangulations. As before, we split the domain Ω in N = 2m × 2m subdomains, m = 2, 3, 4 but now
we take quasiuniform meshes with two different mesh sizes: hfine = 1/(2n) and hcoarse = 1/n. We deliberately
choose embedded grids in order to ensure exact numerical integration for the constraints. On the interface the
master subdomains are chosen to be the ones corresponding to the coarser mesh.

We start as before with the linear case, p = 1, and we report the number of iterations when increasing the
number of subdomains N and the number of elements n of the fine mesh. Then, for n/N = 80 constant and
increasing values of p we report, for the two preconditioners P1 and P2, the ratio R2 introduced in (5.7).

Similar behavior is obtained with nonconforming grids that are not embedded, these results will be presented
in [32].

L shaped domain with graded meshes. Finally we present results for an L-shaped domain. Figure 5
displays two different decompositions of the domain made up of respectively 12 and 48 subdomains, and the
two associated mesh. The polynomial order is fixed subdomain-wise and it goes from 1 to 5 as the distance of



SUBSTRUCTURING PRECONDITIONERS FOR h − p MORTAR FEM 1079

1 2 3 4 5
0.5

1

1.5

2

2.5

3

·106

p

#
do

ff
or

Sc
hu

r
co

m
pl

em
en

t

0

2

4

6

8
·108

#
do

ff
or

gl
ob

al
pr

ob
le

m

1 2 3 4 5
0.2

0.4

0.6

0.8

1

1.2

1.4
·107

p

#
do

ff
or

Sc
hu

r
co

m
pl

em
en

t

0

0.5

1

1.5

2

2.5

3

·109

#
do

ff
or

gl
ob

al
pr

ob
le

m

1 2 3 4 5

0.5

1

1.5

2
·107

p

#
do

ff
or

Sc
hu

r
co

m
pl

em
en

t

0

1

2

3

4

·109

#
do

ff
or

gl
ob

al
pr

ob
le

m

1 1.5 2 2.5 3 3.5 4
0.5

1

1.5

2

2.5

·107

p

#
do

ff
or

Sc
hu

r
co

m
pl

em
en

t

0

1

2

3

4

5
·109

#
do

ff
or

gl
ob

al
pr

ob
le

m

Figure 3. Number of degrees of freedom as function of p with 4096, 16 384, 22 500 and 40 000
subdomains. Note that two different scalings are used for the global problem (scaling marked
on the right side of each figure) and for the Schur complements (on the left of each figure). For
p = 4 and 40 000 subdomains the global problem has about 5 billion of unknowns, and it is
solved in less than 3 min.

Table 8. Polynomial order p = 1. Preconditioner P1. Number of iterations required by PCG.

N\n 5 10 20 40 80 180 320
16 12 17 19 20 20 21 21
64 14 18 20 22 24 27 30
256 12 15 17 19 21 21 23

Table 9. Polynomial order p = 1. Preconditioner P2. Number of iterations required by PCG.

N\n 5 10 20 40 80 180 320
16 14 17 18 18 20 22 23
64 18 18 19 20 23 26 28
256 16 16 17 19 22 24 27
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4.1. Level 2 4.2. Level 3

Figure 4. Nonconforming decompositions with unstructured meshes in the case of 4 subdomains.

Figure 5. L-shaped domain decomposed in 12 (left), 48 (middle) and 192 (right) subdomains
and the associated meshes; the minimum mesh size is hmin = 0.0125. The polynomial order p
goes from 1 to 5 as the distance from the singularities increases and it is fixed subdomain-wise.

Table 10. Ratio R2 for n/N = 80, preconditioner P1 and increasing values of the polynomial
order p. Between parentheses the number of iterations.

N\p 1 2 3 4 5
16 0.82(22) 0.65(24) 0.63(24) 0.62(24) 0.62(26)
64 0.82(25) 0.65(26) 0.63(27) 0.62(29) 0.61(29)
256 0.77(21) 0.63(21) 0.60(21) 0.60(22) 0.59(23)

Table 11. Ratio R2 for n/N = 80, preconditioner P2 and increasing values of the polynomial
order p. Between parentheses the number of iterations.

N\p 1 2 3 4 5
16 0.74(22) 0.70(27) 0.71(28) 0.73(28) 0.74(28)
64 0.76(22) 0.73(28) 0.75(30) 0.76(31) 0.77(32)
256 0.77(21) 0.72(25) 0.74(30) 0.76(31) 0.78(31)
1024 0.77(19) 0.72(23) 0.71(25) 0.72(25) 0.73(29)
4096 0.71(17) 0.72(21) 0.71(22) 0.72(23) 0.72(24)
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Table 12. Ratio R2, number of iterations (between parenthesis) and number of degrees of
freedom for an L-shaped domain decomposed in 12, 48 and 192 subdomains. Uniform mesh
with p = 5 in each subdomain and a graded mesh with p from 1 to 5. Results for the graded
mesh with 192 subdomains and hmin = .05 and .025 are not available, since the subdomain size
would, in this case, be to small with respect to the largest elements of the mesh.

12 subdomains
hmin uniform p = 5 graded mesh p = 1 : 5
0.05 2.74(36) 10 250 3.70(48) 5090
0.025 2.63(41) 37 175 3.44(50) 13 943
0.0125 2.58(40) 142 250 3.33(47) 34 437
0.00625 2.74(45) 558 675 3.23(50) 94 910

48 subdomains
hmin uniform p = 5 graded mesh p = 1 : 5
0.05 3.01(37) 15 839 4.50(48) 5215
0.025 2.75(39) 40 349 3.57(50) 11 069
0.0125 2.63(43) 147 699 3.17(53) 27 739
0.00625 2.64(48) 567 149 2.93(53) 71 939

192 subdomains
hmin uniform p = 5 graded mesh p = 1 : 5
0.05 3.43(34) 33 917 –
0.025 2.89(36) 62 877 –
0.0125 2.71(40) 160 122 2.73(46) 33 188
0.00625 2.61(44) 588 222 2.75(50) 81 162

the subdomain from the singularity increases, see Figure 5 The mesh is graded and becomes increasingly finer
towards the singularity.

In Table 12 we compare the performance of preconditioner P2 for such meshes, with the performance of
the same preconditioner on a uniform mesh with polynomial order p = 5 in all subdomains and uniform mesh
size equal to the diameter of the smallest triangle in the graded mesh (which we denote by hmin). For both
uniform and graded mesh, the table reports, for four different values of hmin, the ratio R2, the number of
iterations (between parentheses) and the number of degrees of freedom. We observe that the performance of our
preconditioner on the graded mesh is slightly worse than it is on the corresponding uniform mesh. However we
believe that this is more than compensated by the difference in the number of degrees of freedom. Moreover,
the difference between the two cases (uniform vs. graded) becomes smaller and smaller as hmin goes to 0.
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