hp-Version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes
ESAIM: Mathematical Modelling and Numerical Analysis , Volume 50 (2016) no. 3, pp. 699-725.

We consider the hp-version interior penalty discontinuous Galerkin finite element method (DGFEM) for the numerical approximation of the advection-diffusion-reaction equation on general computational meshes consisting of polygonal/polyhedral (polytopic) elements. In particular, new hp-version a priori error bounds are derived based on a specific choice of the interior penalty parameter which allows for edge/face-degeneration. The proposed method employs elemental polynomial bases of total degree p (𝒫 p -basis) defined in the physical coordinate system, without requiring the mapping from a given reference or canonical frame. Numerical experiments highlighting the performance of the proposed DGFEM are presented. In particular, we study the competitiveness of the p-version DGFEM employing a 𝒫 p -basis on both polytopic and tensor-product elements with a (standard) DGFEM employing a (mapped) 𝒬 p -basis. Moreover, a computational example is also presented which demonstrates the performance of the proposed hp-version DGFEM on general agglomerated meshes.

Received:
DOI: 10.1051/m2an/2015059
Classification: 65N30, 65N50, 65N55
Keywords: Discontinuous Galerkin, polygonal elements, polyhedral elements, hp-finite element methods, inverse estimates, ��-basis, PDEs with nonnegative characteristic form
Cangiani, Andrea 1; Dong, Zhaonan 1; Georgoulis, Emmanuil H. 2; Houston, Paul 3

1 Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK
2 Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK & School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 15780 Athens, Greece
3 School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
@article{M2AN_2016__50_3_699_0,
     author = {Cangiani, Andrea and Dong, Zhaonan and Georgoulis, Emmanuil H. and Houston, Paul},
     title = {$hp${-Version} discontinuous {Galerkin} methods for advection-diffusion-reaction problems on polytopic meshes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {699--725},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {3},
     year = {2016},
     doi = {10.1051/m2an/2015059},
     mrnumber = {3507270},
     zbl = {1342.65213},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2015059/}
}
TY  - JOUR
AU  - Cangiani, Andrea
AU  - Dong, Zhaonan
AU  - Georgoulis, Emmanuil H.
AU  - Houston, Paul
TI  - $hp$-Version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 699
EP  - 725
VL  - 50
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2015059/
DO  - 10.1051/m2an/2015059
LA  - en
ID  - M2AN_2016__50_3_699_0
ER  - 
%0 Journal Article
%A Cangiani, Andrea
%A Dong, Zhaonan
%A Georgoulis, Emmanuil H.
%A Houston, Paul
%T $hp$-Version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 699-725
%V 50
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2015059/
%R 10.1051/m2an/2015059
%G en
%F M2AN_2016__50_3_699_0
Cangiani, Andrea; Dong, Zhaonan; Georgoulis, Emmanuil H.; Houston, Paul. $hp$-Version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes. ESAIM: Mathematical Modelling and Numerical Analysis , Volume 50 (2016) no. 3, pp. 699-725. doi : 10.1051/m2an/2015059. http://www.numdam.org/articles/10.1051/m2an/2015059/

P.F. Antonietti and B. Ayuso, Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: non-overlapping case. M2AN 41 (2007) 21–54. | DOI | Numdam | MR | Zbl

P.F. Antonietti and B. Ayuso, Multiplicative Schwarz methods for discontinuous Galerkin approximations of elliptic problems. M2AN 42 (2008) 443–469. | DOI | Numdam | MR | Zbl

P.F. Antonietti and P. Houston, A class of domain decomposition preconditioners for hp-discontinuous Galerkin finite element methods. J. Sci. Comput. 46 (2011) 124–149. | DOI | MR | Zbl

P.F. Antonietti, S. Giani and P. Houston, hp-Version composite discontinuous Galerkin methods for elliptic problems on complicated domains. SIAM J. Sci. Comput. 35 (2013) A1417–A1439. | DOI | MR | Zbl

P.F. Antonietti, S. Giani and P. Houston, Domain decomposition preconditioners for Discontinuous Galerkin methods for elliptic problems on complicated domains. J. Sci. Comput. 60 (2014) 203–227. | DOI | MR | Zbl

P.F. Antonietti, P. Houston, M. Sarti and M. Verani, Multigrid algorithms for hp-version interior penalty discontinuous Galerkin methods on polygonal and polyhedral meshes. Preprint (2014). | arXiv | MR

P.F. Antonietti, M. Sarti and M. Verani, Multigrid algorithms for hp-Discontinuous Galerkin discretizations of elliptic problems. SIAM J. Numer. Anal. 53 (2015) 598–618. | DOI | MR | Zbl

D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 1749–1779. | DOI | MR | Zbl

B. Ayuso and L.D. Marini, Discontinuous Galerkin methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 47 (2009) 1391–1420. | DOI | MR | Zbl

I. Babuška, The finite element method with penalty. Math. Comput. 27 (1973) 221–228. | DOI | MR | Zbl

I. Babuška and M. Suri, The h-p version of the finite element method with quasi-uniform meshes. RAIRO Modél. Math. Anal. Numér. 21 (1987) 199–238. | DOI | Numdam | MR | Zbl

I. Babuška and M. Suri, The optimal convergence rate of the p-version of the finite element method. SIAM J. Numer. Anal. 24 (1987) 750–776. | DOI | MR | Zbl

G.A. Baker, Finite element methods for elliptic equations using nonconforming elements. Math. Comput. 31 (1977) 45–59. | DOI | MR | Zbl

F. Bassi, L. Botti and A. Colombo, Agglomeration-based physical frame dG discretizations: An attempt to be mesh free. Math. Models Methods Appl. Sci. 24 (2014) 1495–1539. | DOI | MR | Zbl

F. Bassi, L. Botti, A. Colombo, D.A. Di Pietro and P. Tesini, On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys. 231 (2012) 45–65. | DOI | MR | Zbl

F. Bassi, L. Botti, A. Colombo and S. Rebay, Agglomeration based discontinuous Galerkin discretization of the Euler and Navier-Stokes equations. Comput. Fluids 61 (2012) 77–85. | DOI | MR | Zbl

S.C. Brenner and J. Zhao, Convergence of multigrid algorithms for interior penalty methods. Appl. Numer. Anal. Comput. Math. 2 (2005) 3–18. | DOI | MR | Zbl

S.C. Brenner, J. Cui and L.-Y. Sung, Multigrid methods for the symmetric interior penalty method on graded meshes. Numer. Linear Algebra Appl. 16 (2009) 481–501. | DOI | MR | Zbl

A Buffa, T.J.R. Hughes and G Sangalli, Analysis of a multiscale discontinuous Galerkin method for convection-diffusion problems. SIAM J. Numer. Anal. 44 (2006) 1420–1440. | DOI | MR | Zbl

A. Cangiani, J. Chapman, E.H. Georgoulis and M. Jensen, On the stability of continuous-discontinuous Galerkin methods for advection-diffusion-reaction problems. J. Sci. Comput. 57 (2013) 313–330. | DOI | MR | Zbl

A. Cangiani, E.H. Georgoulis and P. Houston, hp–version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24 (2014) 2009–2041. | DOI | MR | Zbl

A. Chernov, Optimal convergence estimates for the trace of the polynomial L 2 -projection operator on a simplex. Math. Comput. 81 (2012) 765–787. | DOI | MR | Zbl

P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Vol. 4 of Stud. Math. Appl. North-Holland Publishing Co., Amsterdam (1978). | MR | Zbl

B. Cockburn, An Introduction to the Discontinuous Galerkin Method for Convection-Dominated Problems. In Advanced numerical approximation of nonlinear hyperbolic equations (Cetraro, 1997). Springer, Berlin (1998) 151–268. | MR | Zbl

B. Cockburn, G.E. Karniadakis and C.-W. Shu., Eds., Discontinuous Galerkin Methods. Theory, Computation and Applications. Papers from the 1st International Symposium held in Newport, RI, May 24–26 1999. In Lect. Notes Comput. Sci. Eng. Springer-Verlag, Berlin (2000). | MR | Zbl

B. Cockburn, B. Dong and J. Guzmán, Optimal convergence of the original DG method for the transport-reaction equation on special meshes. SIAM J. Numer. Anal. 46 (2008) 1250–1265. | DOI | MR | Zbl

B. Cockburn, B. Dong, J. Guzmán and J. Qian, Optimal convergence of the original DG method on special meshes for variable transport velocity. SIAM J. Numer. Anal. 48 (2010) 133–146. | DOI | MR | Zbl

D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Vol. 69 of Math. Appl. Springer, Heidelberg (2012). | MR | Zbl

X. Feng and O.A. Karakashian, Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal., 39 (2001) 1343–1365. | DOI | MR | Zbl

E.H. Georgoulis, Discontinuous Galerkin methods on shape-regular and anisotropic meshes. D. Phil. thesis, University of Oxford (2003).

E.H. Georgoulis, Inverse-type estimates on hp-finite element spaces and applications. Math. Comput. 77 (2008) 201–219. | DOI | MR | Zbl

E.H. Georgoulis and A. Lasis, A note on the design of hp-version interior penalty discontinuous Galerkin finite element methods for degenerate problems. IMA J. Numer. Anal. 26 (2006) 381–390. | DOI | MR | Zbl

S. Giani and P. Houston, hp-Adaptive composite discontinuous Galerkin methods for elliptic problems on complicated domains. Num. Meth. Partial Differ. Eqs. 30 (2014) 1342–1367. | DOI | MR | Zbl

P. Houston, C. Schwab and E. Süli, Stabilized hp-finite element methods for first-order hyperbolic problems. SIAM J. Numer. Anal. 37 (2000) 1618–1643. | DOI | MR | Zbl

P. Houston and E. Süli, Stabilised hp-finite element approximation of partial differential equations with nonnegative characteristic form. Computing 66 (2001) 99–119. | DOI | MR | Zbl

P. Houston, C. Schwab and E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002) 2133–2163. | DOI | MR | Zbl

C. Johnson and J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comput. 46 (1986) 1–26. | DOI | MR | Zbl

G. Karypis and V. Kumar, A fast and highly quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20 (1999) 359–392. | DOI | MR | Zbl

C. Lasser and A. Toselli, An overlapping domain decomposition preconditioner for a class of discontinuous Galerkin approximations of advection-diffusion problems. Math. Comput. 72 (2003) 1215–1238. | DOI | MR | Zbl

K. Lipnikov, D. Vassilev and I. Yotov, Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes-Darcy flows on polygonal and polyhedral grids. Numer. Math. (2013) 1–40. | MR | Zbl

R. Muñoz-Sola, Polynomial liftings on a tetrahedron and applications to the hp-version of the finite element method in three dimensions. SIAM J. Numer. Anal. 34 (1997) 282–314. | DOI | MR | Zbl

J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Uni. Hamburg 36 (1971) 9–15. | DOI | MR | Zbl

I. Perugia and D. Schötzau, An hp-analysis of the local discontinuous Galerkin method for diffusion problems. J. Sci. Comput. 17 (2002) 561–571. | DOI | MR | Zbl

T.E. Peterson, A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Numer. Anal. 28 (1991) 133–140. | DOI | MR | Zbl

W.H. Reed and T.R. Hill, Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973).

C. Schwab, p– and hp–Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. Numerical Mathematics and Scientific Computation. Oxford University Press (1998). | MR | Zbl

E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton, University Press, Princeton, N.J. (1970). | MR | Zbl

C. Talischi, G.H. Paulino, A. Pereira and I.F.M. Menezes, Polymesher: A general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidisc. Optim. 45 (2012) 309–328,. | DOI | MR | Zbl

R. Verfürth, On the constants in some inverse inequalities for finite element functions. Technical Report 257, University of Bochum (1999).

D. Wirasaet, E.J. Kubatko, C.E. Michoski, S. Tanaka, J.J. Westerink and C. Dawson, Discontinuous Galerkin methods with nodal and hybrid modal/nodal triangular, quadrilateral, and polygonal elements for nonlinear shallow water flow. Comput. Methods Appl. Mech. Engrg. 270 (2014) 113–149. | DOI | MR | Zbl

Cited by Sources: