@article{M2AN_1987__21_2_199_0,
author = {Babu\v{s}ka, I. and Suri, Manil},
title = {The $h-p$ version of the finite element method with quasiuniform meshes},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {199--238},
year = {1987},
publisher = {AFCET - Gauthier-Villars},
address = {Paris},
volume = {21},
number = {2},
mrnumber = {896241},
zbl = {0623.65113},
language = {en},
url = {https://www.numdam.org/item/M2AN_1987__21_2_199_0/}
}
TY - JOUR AU - Babuška, I. AU - Suri, Manil TI - The $h-p$ version of the finite element method with quasiuniform meshes JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1987 SP - 199 EP - 238 VL - 21 IS - 2 PB - AFCET - Gauthier-Villars PP - Paris UR - https://www.numdam.org/item/M2AN_1987__21_2_199_0/ LA - en ID - M2AN_1987__21_2_199_0 ER -
%0 Journal Article %A Babuška, I. %A Suri, Manil %T The $h-p$ version of the finite element method with quasiuniform meshes %J ESAIM: Modélisation mathématique et analyse numérique %D 1987 %P 199-238 %V 21 %N 2 %I AFCET - Gauthier-Villars %C Paris %U https://www.numdam.org/item/M2AN_1987__21_2_199_0/ %G en %F M2AN_1987__21_2_199_0
Babuška, I.; Suri, Manil. The $h-p$ version of the finite element method with quasiuniform meshes. ESAIM: Modélisation mathématique et analyse numérique, Tome 21 (1987) no. 2, pp. 199-238. https://www.numdam.org/item/M2AN_1987__21_2_199_0/
[1] and , Survey Lectures on the Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, ed.), 3-359, Academic Press, New York, 1972. | Zbl | MR
[2] , , Error estimates for the combined h and p versions of finite element method. Numer. Math. 37 (1981), 252-277. | Zbl | MR
[3] , , , , Theory and performance of the h-p version of the finite element method. To appear.
[4] , , , Direct and inverse error estimates for finite element method. . SIAM J. Numer. Anal. 18 (1981), 515-545. | Zbl
[5] , , The optimal convergence rate of the p-version of the finite element method. Tech. Note BN-1045, Institute for Physical Science and Technology, University of Maryland, Oct. 1985. | Zbl
[6] , and , The p-version of the finite element method. SIAM J. Numer. Anal. 18 (1981), 515-545. | Zbl | MR
[7] and , On the rate of convergence of finite element method. Internat. J. Numer. Math. Engrg. 18 (1982), 323-341. | Zbl | MR
[8] and , Interpolation Spaces. Springer, Berlin, Heidelberg, New York, 1976. | Zbl
[9] , The Finite Element Method for Elliptic Problems. North-Holland, 1978. | Zbl | MR
[10] , The approximation theory for the p-version of the finite element method. SIAM J. Numer. Anal. 21 (1984), 1180-1207. | Zbl | MR
[11] , The Approximation of the Solutions of Elliptic Boundary-Value Problems via the p-Version of the Finite Element Method. SIAM J. Numer. Anal. 23 (1986), 58-77. | Zbl | MR
[12] , Elliptic problems in nonsmooth domains. Pitman, Boston, 1985. | Zbl | MR
[13] and , The h, p and h-p versions of the finite element method for one dimensional problem : Part 1 : The error analysis of the p-version. Tech. Note BN-1036 ; Part 2 : The error analysis of the h and h-p versions. Tech. Note BN-1037 ; Part 3 : The adaptive h-p version, Tech. Note BN-1038, IPST, University of Maryland, College Park, 1985. To appear in Nume. Math. | Zbl
[14] , , The h-p Version of the Finite Element Method. Part I : The basic approximation results. Part II : General results and applications. To appear in Comp. Mech. 1 (1986). | Zbl | MR
[15] , , , Inequalities. Cambridge University Press, Cambridge, 1934. | Zbl | JFM
[16] , Boundary value problems for elliptic equations in domains with conic or angular points. Trans. Moscow Math. Soc. (1967), 227-313. | Zbl | MR
|17] , , Non-homogeneous boundary value problems and applications-I. Springer-Verlag, Berlin, Heidelberg, New York, 1972. | Zbl
[18] , n-widths in Approximation Theory. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985. | Zbl | MR
[19] , Singular integrals and differentiability properties of functions. Princeton University Press, Princeton, N. J., 1970. | Zbl | MR
[20] and , An Analysis of the Finite Element Method. Prentice-Hall, Inglewood Cliffs, 1973. | Zbl | MR
[21] , PROBE : Theoretical Manual. Noetic Technologies Corporation, St Louis, Missouri, 1985.
[22] , Computation of Stress Field Parameters in Area of Steep stress gradients. Tech. Note WU/CCM-85/1, Center for Computational Mechanics, Washington University, 1985. | Zbl
[23] , Mesh Design of the p-Version of the Finite Element Method. Lecture at Joint ASME/ASCE Mechanics Conference, Albuquerque, New Mexico, June 24-26, 1985. Report WV/CCM-85/2, Center for Computational Mechanics, Washington University, St Louis. | Zbl
[24] , Implementation of a Finite Element Software System with h- and p-Extension Capabilities. Proc., 8th Invitational UFEM Symposium : Unification of Finite Element Software Systems. Ed. by H. Kardestuncer, The University of Connecticut, May 1985.





