A new class of nonparametric nonconforming quadrilateral finite elements is introduced which has the midpoint continuity and the mean value continuity at the interfaces of elements simultaneously as the rectangular DSSY element [J. Douglas, Jr., J.E. Santos, D. Sheen and X. Ye, ESAIM: M2AN 33 (1999) 747-770.] The parametric DSSY element for general quadrilaterals requires five degrees of freedom to have an optimal order of convergence [Z. Cai, J. Douglas, Jr., J.E. Santos, D. Sheen and X. Ye, Calcolo 37 (2000) 253-254.], while the new nonparametric DSSY elements require only four degrees of freedom. The design of new elements is based on the decomposition of a bilinear transform into a simple bilinear map followed by a suitable affine map. Numerical results are presented to compare the new elements with the parametric DSSY element.
Keywords: nonconforming, finite element, quadrilateral
@article{M2AN_2013__47_6_1783_0, author = {Jeon, Youngmok and NAM, Hyun and Sheen, Dongwoo and Shim, Kwangshin}, title = {A class of nonparametric {DSSY} nonconforming quadrilateral elements}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1783--1796}, publisher = {EDP-Sciences}, volume = {47}, number = {6}, year = {2013}, doi = {10.1051/m2an/2013088}, mrnumber = {3123376}, zbl = {1287.65109}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2013088/} }
TY - JOUR AU - Jeon, Youngmok AU - NAM, Hyun AU - Sheen, Dongwoo AU - Shim, Kwangshin TI - A class of nonparametric DSSY nonconforming quadrilateral elements JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2013 SP - 1783 EP - 1796 VL - 47 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2013088/ DO - 10.1051/m2an/2013088 LA - en ID - M2AN_2013__47_6_1783_0 ER -
%0 Journal Article %A Jeon, Youngmok %A NAM, Hyun %A Sheen, Dongwoo %A Shim, Kwangshin %T A class of nonparametric DSSY nonconforming quadrilateral elements %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2013 %P 1783-1796 %V 47 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2013088/ %R 10.1051/m2an/2013088 %G en %F M2AN_2013__47_6_1783_0
Jeon, Youngmok; NAM, Hyun; Sheen, Dongwoo; Shim, Kwangshin. A class of nonparametric DSSY nonconforming quadrilateral elements. ESAIM: Mathematical Modelling and Numerical Analysis , Volume 47 (2013) no. 6, pp. 1783-1796. doi : 10.1051/m2an/2013088. http://www.numdam.org/articles/10.1051/m2an/2013088/
[1] Approximation by quadrilateral finite elements. Math. Comput. 71 (2002) 909-922. | MR | Zbl
, and ,[2] Linear finite element methods for planar elasticity. Math. Comput. 59 (1992) 321-338. | Zbl
and ,[3] Nonconforming quadrilateral finite elements: A correction. Calcolo 37 (2000) 253-254. | MR | Zbl
, , , and ,[4] A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations. Calcolo 36 (1999) 215-232. | MR | Zbl
, and ,[5] Projection finite element methods for semiconductor device equations. Computers Math. Appl. 25 (1993) 81-88. | MR | Zbl
,[6] Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO - Math. Model. Numer. Anal. 7 (1973) 33-75. | Numdam | MR | Zbl
and ,[7] Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems. ESAIM: M2AN 33 (1999) 747-770. | Numdam | MR | Zbl
, , and ,[8] Nonconforming elements in the mixed finite element method. J. Comput. Math. 2 (1984) 223-233. | MR | Zbl
,[9] Constrained quadrilateral nonconforming rotated Q1-element. J. Comput. Math. 23 (2005) 561-586. | MR | Zbl
and ,[10] A nonparametric DSSY nonconforming quadrilateral element with maximal inf-sup constant (2013). In preparation.
, , and ,[11] New robust nonconforming finite elements of higher order. Appl. Numer. Math. 62 (2012) 166-184. | MR | Zbl
, , , and ,[12] A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow. Comput. Methods Appl. Mech. Engrg. 124 (1995) 195-212. | MR | Zbl
and ,[13] A locking-free nonconforming finite element method for planar elasticity. Adv. Comput. Math. 19 (2003) 277-291. | MR | Zbl
, and ,[14] Nonconforming rotated Q1 element for Reissner-Mindlin plate. Math. Models Methods Appl. Sci. 11 (2001) 1311-1342. | MR | Zbl
and ,[15] Two nonconforming quadrilateral elements for the Reissner-Mindlin plate. Math. Models Methods Appl. Sci. 15 (2005) 1503-1517. | MR | Zbl
and ,[16] A cheapest nonconforming rectangular finite element for the Stokes problem. Comput. Methods Appl. Mech. Engrg. 257 (2013) 77-86. | MR | Zbl
, , and ,[17] P1-nonconforming quadrilateral finite element methods for second-order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 624-640. | MR | Zbl
and ,[18] A quadrilateral Morley element for biharmonic equations. Numer. Math. 124 (2013) 395-413. | MR
and ,[19] Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differ. Equ. 8 (1992) 97-111. | MR | Zbl
and ,[20] An explicit analysis of Stummel's patch test examples. Int. J. Numer. Meth. Engrg. 20 (1984) 1233-1246. | MR | Zbl
,[21] The FEM test for convergence of nonconforming finite elements. Math. Comput. 49 (1987) 391-405. | MR | Zbl
,[22] Efficient solvers for incompressible flow problems, vol. 6. Lecture Notes in Comput. Sci. Engrg. Springer, Berlin (1999). | MR | Zbl
,[23] On the necessity and sufficiency of the patch test for convergence of nonconforming finite elements. SIAM J. Numer. Anal. 39 (2001) 363-384. | MR | Zbl
,[24] Analysis of some quadrilateral nonconforming elements for incompressible elasticity. SIAM J. Numer. Anal. 34 (1997) 640-663. | MR | Zbl
,Cited by Sources: