We consider the flow of a viscous incompressible fluid in a rigid homogeneous porous medium provided with mixed boundary conditions. Since the boundary pressure can present high variations, the permeability of the medium also depends on the pressure, so that the model is nonlinear. A posteriori estimates allow us to omit this dependence where the pressure does not vary too much. We perform the numerical analysis of a spectral element discretization of the simplified model. Finally we propose a strategy which leads to an automatic identification of the part of the domain where the simplified model can be used without increasing significantly the error.
Keywords: Darcy's equations, spectral elements, a posteriori analysis
@article{M2AN_2013__47_6_1797_0, author = {Ahusborde, Etienne and Aza{\"\i}ez, Mejdi and Ben Belgacem, Faker and Bernardi, Christine}, title = {Automatic simplification of {Darcy's} equations with pressure dependent permeability}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1797--1820}, publisher = {EDP-Sciences}, volume = {47}, number = {6}, year = {2013}, doi = {10.1051/m2an/2013089}, mrnumber = {3123377}, zbl = {1311.76128}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2013089/} }
TY - JOUR AU - Ahusborde, Etienne AU - Azaïez, Mejdi AU - Ben Belgacem, Faker AU - Bernardi, Christine TI - Automatic simplification of Darcy's equations with pressure dependent permeability JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2013 SP - 1797 EP - 1820 VL - 47 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2013089/ DO - 10.1051/m2an/2013089 LA - en ID - M2AN_2013__47_6_1797_0 ER -
%0 Journal Article %A Ahusborde, Etienne %A Azaïez, Mejdi %A Ben Belgacem, Faker %A Bernardi, Christine %T Automatic simplification of Darcy's equations with pressure dependent permeability %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2013 %P 1797-1820 %V 47 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2013089/ %R 10.1051/m2an/2013089 %G en %F M2AN_2013__47_6_1797_0
Ahusborde, Etienne; Azaïez, Mejdi; Ben Belgacem, Faker; Bernardi, Christine. Automatic simplification of Darcy's equations with pressure dependent permeability. ESAIM: Mathematical Modelling and Numerical Analysis , Volume 47 (2013) no. 6, pp. 1797-1820. doi : 10.1051/m2an/2013089. http://www.numdam.org/articles/10.1051/m2an/2013089/
[1] A priori and a posteriori analysis of finite volume discretizations of Darcy's equations. Numer. Math. 96 (2003) 17-42. | MR | Zbl
, and ,[2] The mortar spectral element method in domains of operators, Part I: The divergence operator and Darcy's equations. IMA J. Numer. Anal. 26 (2006) 131-154. | MR | Zbl
, and ,[3] Spectral discretization of Darcy's equations with pressure dependent porosity. Appl. Math. Comput. 217 (2010) 1838-1856. | MR
, , and ,[4] Staggered grids hybrid-dual spectral element method for second-order elliptic problems, Application to high-order time splitting methods for Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 166 (1998) 183-199. | MR | Zbl
, , and ,[5] Indicateurs d'erreur en h − N version des éléments spectraux. Modél. Math. et Anal. Numér. 30 (1996) 1-38. | Numdam | MR | Zbl
,[6] A penalty algorithm for the spectral element discretization of the Stokes problem. Math. Model. Numer. Anal. 45 (2011) 201-216. | Numdam | MR | Zbl
, , and ,[7] Automatic insertion of a turbulence model in the finite element discretization of the Navier-Stokes equations. Math. Models Methods Appl. Sci. 19 (2009) 1139-1183. | MR | Zbl
, , and ,[8] Automatic coupling and finite element discretization of the Navier-Stokes and heat equations, Internal Report R10001, Labotatoire Jacques-Louis Lions, Paris (2010).
, and ,[9] Polynomials in Sobolev Spaces and Application to the Mortar Spectral Element Method, in preparation.
, and ,[10] Spectral Methods, in the Handbook of Numerical Analysis V, edited by P.G. Ciarlet and J.-L. Lions. North-Holland (1997) 209-485. | MR | Zbl
and ,[11] Discrétisations variationnelles de problèmes aux limites elliptiques, Collection Mathématiques et Applications vol. 45. Springer-Verlag (2004). | MR | Zbl
, and ,[12] A posteriori control of modeling errors and discretization errors. Multiscale Model. Simul. 1 (2003) 221-238. | MR | Zbl
and ,[13] Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ. 1 (2001), 387-404. | MR | Zbl
and ,[14] Finite dimensional approximation of nonlinear problems, Part I: Branches of nonsingular solutions. Numer. Math. 36 (1980) 1-25. | MR | Zbl
, and ,[15] An iterative procedure to solve a coupled two-fluids turbulence model. Math. Model. Numer. Anal. 44 (2010) 693-713. | Numdam | MR | Zbl
, and ,[16] Computable error estimators for the approximation of nonlinear problems by linearized models. Comput. Methods Appl. Mech. Engrg. 196 (2006) 210-224. | MR | Zbl
and ,[17] Discrétisation spectrale et par éléments spectraux des équations de Darcy, Ph.D. Thesis, Université Pierre et Marie Curie, Paris (2009).
,[18] Neumann and mixed problems on curvilinear polyhedra. Integr. Equ. Oper. Th. 15 (1992) 227-261. | MR | Zbl
,[19] Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems. Comput. Methods Appl. Mech. Engrg. 200 (2011) 2782-2795. | MR | Zbl
, and ,[20] Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag (1986). | MR | Zbl
and ,[21] Problèmes aux limites non homogènes et applications, Vol. I. Dunod, Paris (1968). | Zbl
and ,[22] An Lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc. Norm. Sup. Pisa 17 (1963) 189-206. | Numdam | MR | Zbl
,[23] Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems. Numer. Math. 69 (1994) 213-231. | MR | Zbl
and ,[24] On a hierarchy of approximate models for flows of incompressible fluids through porous solid. Math. Models Methods Appl. Sci. 17 (2007) 215-252. | MR | Zbl
,[25] Best constant in Sobolev inequality. Ann. Math. Pura ed Appl. Serie IV 110 (1976) 353-372. | MR | Zbl
,[26] A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley ans Teubner (1996). | Zbl
,Cited by Sources: