The surface Cauchy-Born (SCB) method is a computational multi-scale method for the simulation of surface-dominated crystalline materials. We present an error analysis of the SCB method, focused on the role of surface relaxation. In a linearized 1D model we show that the error committed by the SCB method is 𝒪(1) in the mesh size; however, we are able to identify an alternative “approximation parameter” - the stiffness of the interaction potential - with respect to which the relative error in the mean strain is exponentially small. Our analysis naturally suggests an improvement of the SCB model by enforcing atomistic mesh spacing in the normal direction at the free boundary. In this case we even obtain pointwise error estimates for the strain.
Keywords: surface-dominated materials, surface Cauchy-Born rule, coarse-graining
@article{M2AN_2013__47_1_109_0, author = {Jayawardana, Kavinda and Mordacq, Christelle and Ortner, Christoph and Park, Harold S.}, title = {An analysis of the boundary layer in the {1D} surface {Cauchy-Born} model}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {109--123}, publisher = {EDP-Sciences}, volume = {47}, number = {1}, year = {2013}, doi = {10.1051/m2an/2012021}, mrnumber = {2968697}, zbl = {1273.74004}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2012021/} }
TY - JOUR AU - Jayawardana, Kavinda AU - Mordacq, Christelle AU - Ortner, Christoph AU - Park, Harold S. TI - An analysis of the boundary layer in the 1D surface Cauchy-Born model JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2013 SP - 109 EP - 123 VL - 47 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2012021/ DO - 10.1051/m2an/2012021 LA - en ID - M2AN_2013__47_1_109_0 ER -
%0 Journal Article %A Jayawardana, Kavinda %A Mordacq, Christelle %A Ortner, Christoph %A Park, Harold S. %T An analysis of the boundary layer in the 1D surface Cauchy-Born model %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2013 %P 109-123 %V 47 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2012021/ %R 10.1051/m2an/2012021 %G en %F M2AN_2013__47_1_109_0
Jayawardana, Kavinda; Mordacq, Christelle; Ortner, Christoph; Park, Harold S. An analysis of the boundary layer in the 1D surface Cauchy-Born model. ESAIM: Mathematical Modelling and Numerical Analysis , Volume 47 (2013) no. 1, pp. 109-123. doi : 10.1051/m2an/2012021. http://www.numdam.org/articles/10.1051/m2an/2012021/
[1] From molecular models to continuum mechanics. Arch. Ration. Mech. Anal. 164 (2002) 341-381. | MR | Zbl
, , and ,[2] Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics. ESAIM : M2AN 39 (2005) 797-826. | Numdam | MR
, , and ,[3] Surface energies in nonconvex discrete systems. Math. Models Methods Appl. Sci. 17 (2007) 985-1037. | MR | Zbl
and ,[4] Effective cohesive behavior of layers of interatomic planes. Arch. Ration. Mech. Anal. 180 (2006) 151-182. | MR | Zbl
, and ,[5] Surface and interface stress effects in thin films. Prog. Surf. Sci. 46 (1994) 1-38.
,[6] Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69 (2004) 165410.
, , and ,[7] Surface-stress-induced phase transformation in metal nanowires. Nat. Mater. 2 (2003) 656-660.
, and ,[8] An analysis of the effect of ghost force oscillation on quasicontinuum error. ESAIM : M2AN 43 (2009) 591-604. | Numdam | MR | Zbl
and ,[9] Accuracy of quasicontinuum approximations near instabilities. J. Mech. Phys. Solids 58 (2010) 1741-1757. | MR | Zbl
, and ,[10] W. E and P. Ming, Cauchy-Born rule and the stability of crystalline solids : static problems. Arch. Ration. Mech. Anal. 183 (2007) 241-297. | MR | Zbl
[11] An extended finite element/level set method to study surface effects on the mechanical behavior and properties of nanomaterials. Int. J. Numer. Methods Eng. 84 (2010) 1466-1489. | MR | Zbl
, and ,[12] Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice. J. Nonlinear Sci. 12 (2002) 445-478. | MR | Zbl
and ,[13] Finite element characterization of the size-dependent mechanical behaviour in nanosystems. Nanotechnol. 17 (2006) 1118-1122.
, and ,[14] A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57 (1975) 291-323. | MR | Zbl
and ,[15] The finite element absolute nodal coordinate formulation incorporated with surface stress effect to model elastic bending nanowires in large deformation. Comput. Mech. 44 (2009) 395-403. | Zbl
and ,[16] A finite element framework for continua with boundary energies. part I : the two-dimensional case. Comput. Methods Appl. Mech. Eng. 198 (2009) 2198-2208. | MR | Zbl
and ,[17] Size-dependent elasticity of nanowires : nonlinear effects. Phys. Rev. B 71 (2005) R241-403.
, and ,[18] Shape memory effect in Cu nanowires. Nano Lett. 5 (2005) 2039-2043.
, and ,[19] Nonlinear elasticity from atomistic mechanics. E-prints arXiv:1202.3858v3 (2012).
and ,[20] Surface stress effects on the resonant properties of silicon nanowires. J. Appl. Phys. 103 (2008) 123504.
,[21] Quantifying the size-dependent effect of the residual surface stress on the resonant frequencies of silicon nanowires if finite deformation kinematics are considered. Nanotechnol. 20 (2009) 115701.
,[22] Surface Cauchy-Born analysis of surface stress effects on metallic nanowires. Phys. Rev. B 75 (2007) 085408.
and ,[23] A surface Cauchy-Born model for silicon nanostructures. Comput. Methods Appl. Mech. Eng. 197 (2008) 3249-3260. | MR | Zbl
and ,[24] Surface stress effects on the resonant properties of metal nanowires : the importance of finite deformation kinematics and the impact of the residual surface stress. J. Mech. Phys. Solids 56 (2008) 3144-3166. | Zbl
and ,[25] Shape memory and pseudoelasticity in metal nanowires. Phys. Rev. Lett. 95 (2005) 255504.
, and ,[26] A surface Cauchy-Born model for nanoscale materials. Int. J. Numer. Methods Eng. 68 (2006) 1072-1095. | MR | Zbl
, and ,[27] Mechanics of crystalline nanowires. MRS Bull. 34 (2009) 178-183.
, , and ,[28] A new multiscale formulation for the electromechanical behavior of nanomaterials. Comput. Methods Appl. Mech. Eng. 200 (2011) 2447-2457. | MR | Zbl
, and ,[29] Robust numerical methods for singularly perturbed differential equations, Convection-diffusion-reaction and flow problems, 2nd edition. Springer Series in Comput. Math. 24 (2008). | MR | Zbl
, and ,[30] Continuum surface energy from a lattice model. E-prints arXiv:1201.0712 (2012). | MR
,[31] Boundary layer energies for nonconvex discrete systems. Math. Mod. Methods Appl. Sci. 21 (2011) 777-817. | MR | Zbl
, and ,[32] On the passage from atomic to continuum theory for thin films. Arch. Ration. Mech. Anal. 190 (2008) 1-55. | MR | Zbl
.[33] Superplastic deformation of defect-free au nanowires by coherent twin propagation. Nano Lett. 11 (2011) 3499-3502.
, , , , , , , , , , , , and ,[34] Consistent energy-based atomistic/continuum coupling for two-body potentials in one and two dimensions. Multiscale Model. Simul. 9 (2011) 905-932. | MR | Zbl
,[35] Bond-order-bond-length-bond-strength (bond-OLS) correlation mechanism for the shape-and-size dependence of a nanosolid. J. Phys. : Condens. Matter 14 (2002) 7781-7795.
, , , , , , and ,[36] A proof of crystallization in two dimensions. Commun. Math. Phys. 262 (2006) 209-236. | MR | Zbl
,[37] Surface energies in a two-dimensional mass-spring model for crystals. ESAIM : M2AN 45 (2011) 873-899. | Numdam | MR | Zbl
,[38] A multiscale, finite deformation formulation for surface stress effects on the coupled thermomechanical behavior of nanomaterials. Comput. Methods Appl. Mech. Eng. 197 (2008) 3337-3350. | MR | Zbl
and ,[39] Surface stress effects on the bending properties of fcc metal nanowires. Phys. Rev. B 79 (2009) 195421.
and ,[40] An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites. Comput. Mech. 42 (2008) 119-131. | MR | Zbl
, and ,Cited by Sources: