Searching for the optimal partitioning of a domain leads to the use of the adjoint method in topological asymptotic expansions to know the influence of a domain perturbation on a cost function. Our approach works by restricting to local subproblems containing the perturbation and outperforms the adjoint method by providing approximations of higher order. It is a universal tool, easily adapted to different kinds of real problems and does not need the fundamental solution of the problem; furthermore our approach allows to consider finite perturbations and not infinitesimal ones. This paper provides theoretical justifications in the linear case and presents some applications with topological perturbations, continuous perturbations and mesh perturbations. This proposed approach can also be used to update the solution of singularly perturbed problems.
Keywords: adjoint method, topology optimization, calculus of variations
@article{M2AN_2013__47_1_83_0, author = {Larnier, Stanislas and Masmoudi, Mohamed}, title = {The extended adjoint method}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {83--108}, publisher = {EDP-Sciences}, volume = {47}, number = {1}, year = {2013}, doi = {10.1051/m2an/2012020}, mrnumber = {2968696}, zbl = {1271.65102}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2012020/} }
TY - JOUR AU - Larnier, Stanislas AU - Masmoudi, Mohamed TI - The extended adjoint method JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2013 SP - 83 EP - 108 VL - 47 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2012020/ DO - 10.1051/m2an/2012020 LA - en ID - M2AN_2013__47_1_83_0 ER -
%0 Journal Article %A Larnier, Stanislas %A Masmoudi, Mohamed %T The extended adjoint method %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2013 %P 83-108 %V 47 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2012020/ %R 10.1051/m2an/2012020 %G en %F M2AN_2013__47_1_83_0
Larnier, Stanislas; Masmoudi, Mohamed. The extended adjoint method. ESAIM: Mathematical Modelling and Numerical Analysis , Volume 47 (2013) no. 1, pp. 83-108. doi : 10.1051/m2an/2012020. http://www.numdam.org/articles/10.1051/m2an/2012020/
[1] Structural optimization using topological and shape sensitivity via a level set method. Control Cybern. 34 (2005) 59-80. | MR | Zbl
, , and ,[2] High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of conductivity inhomogeneities of small diameter. SIAM J. Math. Anal. 34 (2003) 1152-1166. | MR | Zbl
and ,[3] Reconstruction of small inhomogeneities from boundary measurements. Lect. Notes Math. 1846 (2004). | MR | Zbl
and ,[4] An accurate formula for the reconstruction of conductivity inhomogeneities. Adv. Appl. Math. 30 (2003) 679-705. | MR | Zbl
and ,[5] Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume. ESAIM : COCV 9 (2003) 49-66. | Numdam | MR | Zbl
, and ,[6] MUSIC-type electromagnetic imaging of a collection of small three-dimensional inclusions. SIAM J. Sci. Comput. 29 (2007) 674-709. | MR | Zbl
, , and ,[7] Electrical impedance tomography by elastic deformation. SIAM J. Appl. Math. 68 (2008) 1557-1573. | MR | Zbl
, , , and ,[8] A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements. Quart. Appl. Math. 66 (2008) 139-175. | MR | Zbl
, , and ,[9] Separation of scales in elasticity imaging : a numerical study. J. Comput. Math. 28 (2010) 354-370. | Zbl
, , and ,[10] The topological asymptotic for the Helmoltz equation. SIAM J. Control Optim. 42 (2003) 1523-1544. | MR | Zbl
, and ,[11] Crack detection by the topological gradient method. Control Cybern. 34 (2005) 81-101. | MR | Zbl
, and ,[12] Mathematical Problems in Image Processing : Partial Differential Equations and the Calculus of Variations. Appl. Math. Sci. 147 (2001). | MR | Zbl
and ,[13] A one-shot inpainting algorithm based on the topological asymptotic analysis. Comput. Appl. Math. 25 (2006) 251-267. | MR | Zbl
and ,[14] Image processing by topological asymptotic expansion. J. Math. Imag. Vision 33 (2009) 122-134. | MR
and ,[15] Image processing by topological asymptotic analysis. ESAIM : Proc. Math. Methods Imag. Inverse Probl. 26 (2009) 24-44. | MR | Zbl
and ,[16] Image restoration and edge detection by topological asymptotic expansion. C. R. Acad. Sci. Paris 342 (2006) 313-318. | MR | Zbl
, , and ,[17] Higher-order topological sensitivity for 2-d potential problems. application to fast identification of inclusions. Int. J. Solids Struct. 46 (2009) 2275-2292. | MR | Zbl
,[18] Fast identification of cracks using higher-order topological sensitivity for 2-d potential problems. Special issue on the advances in mesh reduction methods. In honor of Professor Subrata Mukherjee on the occasion of his 65th birthday. Eng. Anal. Bound. Elem. 35 (2011) 223-235. | MR | Zbl
,[19] A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction. ESAIM : M2AN 37 (2003) 159-173. | Numdam | MR | Zbl
and ,[20] Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements. ESAIM : M2AN 37 (2003) 227-240. | Numdam | MR | Zbl
and ,[21] Coupling topological gradient and Gauss-Newton methods, in IUTAM Symposium on Topological Design Optimization. Edited by M.P. Bendsoe, N. Olhoff and O. Sigmund. Springer (2006).
and ,[22] Detection of small inclusions using elastography. Inverse Probl. 22 (2006) 1055-1069. | MR | Zbl
, , and ,[23] The topological asymptotic for pde systems : the elasticity case. SIAM J. Control Optim. 39 (2001) 1756-1778. | MR | Zbl
, and ,[24] Removing holes in topological shape optimization. ESAIM : COCV 14 (2008) 160-191. | Numdam | MR | Zbl
and ,[25] The topological asymptotic expansion for the Dirichlet problem. SIAM J. Control Optim. 41 (2002) 1042-1072. | MR | Zbl
and ,[26] The topological sensitivity and shape optimization for the Stokes equations. SIAM J. Control Optim. 43 (2004) 1-31. | MR | Zbl
and ,[27] From differential calculus to 0-1 topological optimization. SIAM, J. Control Optim. 45 (2007) 1965-1987. | MR | Zbl
, and ,[28] Edge detection and image restoration with anisotropic topological gradient, in IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP) (2010) 1362-1365.
and ,[29] Conception aérodynamique robuste. Ph.D. thesis, Université Paul Sabatier, Toulouse, France (2011).
,[30] The topological asymptotic, in Computational Methods for Control Applications, GAKUTO International Series, edited by R. Glowinski, H. Karawada and J. Periaux. Math. Sci. Appl. 16 (2001) 53-72. | Zbl
,[31] Shape optimization in fluid mechanics. Annu. Rev. Fluid Mech. 36 (2004) 255-279. | MR | Zbl
and ,[32] Elastography : a quantitative method for imaging the elasticity of biological tissues. Ultrason. Imag. 13 (1991) 111-134.
, , , and ,[33] Elastography : imaging the elastic properties of soft tissues with ultrasound. J. Med. Ultrason. 29 (2002) 155-171.
, , , , , , , , , and ,[34] The topological asymptotic with respect to a singular boundary perturbation. C. R. Math. 336 (2003) 1033-1038. | MR | Zbl
,[35] Topologieoptimisierung von Bauteilstrukturen unter Verwendung von Lopchpositionierungkrieterien. Ph.D. thesis, Universitat-Gesamthochschule Siegen, Germany (1995).
,[36] On the topological derivative in shape optimization. SIAM J. Control Optim. 37 (1999) 1251-1272. | MR | Zbl
and ,[37] Image quality assessment : from error visibility to structural similarity. IEEE Trans. Image Process. 13 (2004) 600-612.
, , and ,Cited by Sources: