On the hardness of game equivalence under local isomorphism
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 47 (2013) no. 2, pp. 147-169.

We introduce a type of isomorphism among strategic games that we call local isomorphism. Local isomorphisms is a weaker version of the notions of strong and weak game isomorphism introduced in [J. Gabarro, A. Garcia and M. Serna, Theor. Comput. Sci. 412 (2011) 6675-6695]. In a local isomorphism it is required to preserve, for any player, the player's preferences on the sets of strategy profiles that differ only in the action selected by this player. We show that the game isomorphism problem for local isomorphism is equivalent to the same problem for strong or weak isomorphism for strategic games given in: general, extensive and formula general form. As a consequence of the results in [J. Gabarro, A. Garcia and M. Serna, Theor. Comput. Sci. 412 (2011) 6675-6695] this implies that local isomorphism problem for strategic games is equivalent to (a) the circuit isomorphism problem for games given in general form, (b) the boolean formula isomorphism problem for formula games in general form, and (c) the graph isomorphism problem for games given in explicit form.

DOI : https://doi.org/10.1051/ita/2012024
Classification : 68Q17
Mots clés : game isomorphism, succinct representations, strategic games, formula games, computational complexity, circuit isomorphism, boolean formula isomorphism, graph isomorphism
@article{ITA_2013__47_2_147_0,
     author = {Gabarr\'o, Joaquim and Garc{\'\i}a, Alina and Serna, Maria},
     title = {On the hardness of game equivalence under local isomorphism},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {147--169},
     publisher = {EDP-Sciences},
     volume = {47},
     number = {2},
     year = {2013},
     doi = {10.1051/ita/2012024},
     zbl = {1272.68141},
     mrnumber = {3072315},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ita/2012024/}
}
TY  - JOUR
AU  - Gabarró, Joaquim
AU  - García, Alina
AU  - Serna, Maria
TI  - On the hardness of game equivalence under local isomorphism
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2013
DA  - 2013///
SP  - 147
EP  - 169
VL  - 47
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ita/2012024/
UR  - https://zbmath.org/?q=an%3A1272.68141
UR  - https://www.ams.org/mathscinet-getitem?mr=3072315
UR  - https://doi.org/10.1051/ita/2012024
DO  - 10.1051/ita/2012024
LA  - en
ID  - ITA_2013__47_2_147_0
ER  - 
Gabarró, Joaquim; García, Alina; Serna, Maria. On the hardness of game equivalence under local isomorphism. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 47 (2013) no. 2, pp. 147-169. doi : 10.1051/ita/2012024. http://www.numdam.org/articles/10.1051/ita/2012024/

[1] M. Agrawal and T. Thierauf, The formula isomorphism problem. SIAM J. Comput. 30 (2000) 990-1009. | MR 1778296 | Zbl 0970.68068

[2] C. Àlvarez, J. Gabarro and M. Serna, Equilibria problems on games : Complexity versus succinctness. J. Comput. Syst. Sci. 77 (2011) 1172-1197. | MR 2858016 | Zbl 1230.91006

[3] D. Bergemann and S. Morris, Robust implementation in general mechanisms. Games Econ. Behav. 71 (2011) 261-281. | MR 2814851 | Zbl 1208.91043

[4] E. Bonzon, M.-C. Lagasquie-Schiex, J. Lang and B. Zanuttini, Boolean games revisited, in ECAI 2006, 17th European Conference on Artificial Intelligence (2006) 265-269.

[5] B. Borchet, D. Ranjan and F. Stephan, On the computational complexity of some classical equivalence relations on boolean functions. Theory Comput. Syst. 31 (1998) 679-693. | MR 1642457 | Zbl 0916.68059

[6] P. Borm, A classification of 2 × 2 bimatrix games. Cahiers du C.E.R.O 29 (1987) 69-84. | MR 919046 | Zbl 0634.90095

[7] J. Gabarro, A. Garcia and M. Serna, On the complexity of game isomorphism, in Mathematical Foundations of Computer Science 2007, 32nd International Symposium, MFCS 2007. Lect. Notes Comput. Sci. 4708 (2007) 559-571. | MR 2539457 | Zbl 1147.91303

[8] J. Gabarro, A. Garcia and M. Serna, The complexity of game isomorphism. Theor. Comput. Sci. 412 (2011) 6675-6695. | MR 2885088 | Zbl 1227.91016

[9] A. Garcia, The Complexity of Angel-Daemons and Game Isomorphism. Ph.D. thesis, Universitat Politècnica de Catalunya (Barcelona Tech) (2012).

[10] F. Germano, On some geometry and equivalence classes of normal form games. Inter. J. Game Theory 4 (2006) 561-581. | MR 2302144 | Zbl 1154.91309

[11] D. Kilgour and N. Fraser, A taxonomy of all ordinal 2 × 2 games. Theory Decis. 24 (1988) 99-117. | MR 931042

[12] J. Kobler, U. Schoning and J. Torán, The Graph Isomorphism Problem : Its Structural Complexity. Birkhauser (1993). | MR 1232421 | Zbl 0813.68103

[13] M. Mavronicolas, B. Monien and K.W. Wagner, Weighted boolean formula games, in Internet and Network Economics, Third International Workshop, WINE 2007. Lect. Notes Comput. Sci. 4858 (2007) 469-481.

[14] J. Nash, Non-Cooperative Games, in Classics in Game Theory (1997) 14-26. | Zbl 0045.08202

[15] M.J. Osborne, An Introduction to Game Theory. Oxford University Press (2003).

[16] M.J. Osborne and A. Rubinstein, A Course in Game Theory. MIT Press (1994). | MR 1301776 | Zbl 1194.91003

[17] G. Schoenebeck and S.P. Vadhan, The computational complexity of Nash equilibria in concisely represented games, in ACM Conf. Electr. Commer. (2006) 270-279.

[18] K. Siorpaes and M. Hepp, Ontogame : Weaving the semantic web by online games, in ESWC-2008. Lect. Notes Comput. Sci. 5021 (2008) 751-766.

[19] K. Siorpaes and M. Hepp, Games with purpose for the semantic web. IEEE Intell. Syst. 23 (2008) 50-60.

[20] L. Von Ahn, Games with a purpose. Comput. 39 (2006) 92-94.

[21] M. Voorneveld, Best-response potential games. Econ. Lett. 66 (2000) 289-295. | MR 1737523 | Zbl 0951.91008

[22] J. Williams, The Complet Strategyst. Dover (1986). | MR 868665 | Zbl 1227.91001

Cité par Sources :