On some optimal control problems governed by a state equation with memory
ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 4, pp. 725-743.

The aim of this paper is to study problems of the form: inf (uV) J(u) with J(u):= 0 1 L(s,y u (s),u(s))ds+g(y u (1)) where V is a set of admissible controls and y u is the solution of the Cauchy problem: x ˙(t)=f(.,x(.)),ν t +u(t),t(0,1), x(0)=x 0 and each ν t is a nonnegative measure with support in [0,t]. After studying the Cauchy problem, we establish existence of minimizers, optimality conditions (in particular in the form of a nonlocal version of the Pontryagin principle) and prove some regularity results. We also consider the more general case where the control also enters the dynamics in a nonlocal way.

DOI : https://doi.org/10.1051/cocv:2008005
Classification : 34K35,  49K25
Mots clés : optimal control, memory
@article{COCV_2008__14_4_725_0,
     author = {Carlier, Guillaume and Tahraoui, Rabah},
     title = {On some optimal control problems governed by a state equation with memory},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {725--743},
     publisher = {EDP-Sciences},
     volume = {14},
     number = {4},
     year = {2008},
     doi = {10.1051/cocv:2008005},
     mrnumber = {2451792},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2008005/}
}
TY  - JOUR
AU  - Carlier, Guillaume
AU  - Tahraoui, Rabah
TI  - On some optimal control problems governed by a state equation with memory
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2008
DA  - 2008///
SP  - 725
EP  - 743
VL  - 14
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2008005/
UR  - https://www.ams.org/mathscinet-getitem?mr=2451792
UR  - https://doi.org/10.1051/cocv:2008005
DO  - 10.1051/cocv:2008005
LA  - en
ID  - COCV_2008__14_4_725_0
ER  - 
Carlier, Guillaume; Tahraoui, Rabah. On some optimal control problems governed by a state equation with memory. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 4, pp. 725-743. doi : 10.1051/cocv:2008005. http://www.numdam.org/articles/10.1051/cocv:2008005/

[1] L. Ambrosio, Lecture Notes on Optimal Transport Problems, Mathematical aspects of evolving interfaces, CIME Summer School in Madeira 1812. Springer (2003). | MR 2011032 | Zbl 1047.35001

[2] R. Bellman and K.L. Cooke, Differential-difference equations, Mathematics in Science and Engineering. Academic Press, New York-London (1963). | MR 147745 | Zbl 0105.06402

[3] R. Boucekkine, O. Licandro, L. Puch and F. Del Rio, Vintage capital and the dynamics of the AK model. J. Economic Theory 120 (2005) 39-72. | MR 2110620 | Zbl 1120.91024

[4] P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations and Optimal Control. Birkhäuser (2004). | MR 2041617 | Zbl 1095.49003

[5] C. Dellacherie and P.-A. Meyer, Probabilities and Potential, Mathematical Studies 29. North-Holland (1978). | MR 521810 | Zbl 0494.60001

[6] M.E. Drakhlin and E. Stepanov, On weak lower-semi continuity for a class of functionals with deviating arguments. Nonlinear Anal. TMA 28 (1997) 2005-2015. | MR 1436368 | Zbl 0876.49015

[7] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics in Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1999). | MR 1727362 | Zbl 0939.49002

[8] I. Elsanosi, B. Øksendal and A. Sulem, Some solvable stochastic control problems with delay. Stoch. Stoch. Rep. 71 (2000) 69-89. | MR 1813507 | Zbl 0999.93072

[9] L. El'Sgol'Ts, Introduction to the Theory of Differential Equations with Deviating Arguments. Holden-Day, San Francisco (1966). | MR 192154 | Zbl 0133.33502

[10] F. Gozzi and C. Marinelli, Stochastic optimal control of delay equations arising in advertising models, in Stochastic partial differential equations and applications VII, Chapman & Hall, Boca Raton, Lect. Notes Pure Appl. Math. 245 (2006) 133-148. | MR 2227226 | Zbl 1107.93035

[11] E. Jouini, P.-F. Koehl and N. Touzi, Optimal investment with taxes: an optimal control problem with endogenous delay. Nonlinear Anal. Theory Methods Appl. 37 (1999) 31-56. | MR 1690173 | Zbl 1126.91370

[12] E. Jouini, P.-F. Koehl and N. Touzi, Optimal investment with taxes: an existence result. J. Math. Econom. 33 (2000) 373-388. | MR 1751290 | Zbl 0978.91043

[13] M.N. Oguztöreli, Time-Lag Control Systems. Academic Press, New-York (1966). | MR 217394 | Zbl 0143.12101

[14] F.P. Ramsey, A mathematical theory of saving. Economic J. 38 (1928) 543-559.

[15] L. Samassi, Calcul des variations des fonctionelles à arguments déviés. Ph.D. thesis, University of Paris Dauphine, France (2004).

[16] L. Samassi and R. Tahraoui, Comment établir des conditions nécessaires d'optimalité dans les problèmes de contrôle dont certains arguments sont déviés? C. R. Math. Acad. Sci. Paris 338 (2004) 611-616. | MR 2056469 | Zbl 1095.49021

[17] L. Samassi and R. Tahraoui, How to state necessary optimality conditions for control problems with deviating arguments? ESAIM: COCV (2007) e-first, doi: 10.1051/cocv:2007058. | Numdam | MR 2394516 | Zbl 1133.49002

Cité par Sources :