Generalized solutions to hybrid dynamical systems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 4, pp. 699-724.

Several recent results in the area of robust asymptotic stability of hybrid systems show that the concept of a generalized solution to a hybrid system is suitable for the analysis and design of hybrid control systems. In this paper, we show that such generalized solutions are exactly the solutions that arise when measurement noise in the system is taken into account.

DOI : 10.1051/cocv:2008008
Classification : 93C73, 34A37, 93C65
Mots clés : hybrid systems, generalized solutions, differential inclusions, difference inclusions, robust control, hybrid feedback
@article{COCV_2008__14_4_699_0,
     author = {Sanfelice, Ricardo G. and Goebel, Rafal and Teel, Andrew R.},
     title = {Generalized solutions to hybrid dynamical systems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {699--724},
     publisher = {EDP-Sciences},
     volume = {14},
     number = {4},
     year = {2008},
     doi = {10.1051/cocv:2008008},
     mrnumber = {2451791},
     zbl = {1147.93032},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2008008/}
}
TY  - JOUR
AU  - Sanfelice, Ricardo G.
AU  - Goebel, Rafal
AU  - Teel, Andrew R.
TI  - Generalized solutions to hybrid dynamical systems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2008
SP  - 699
EP  - 724
VL  - 14
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2008008/
DO  - 10.1051/cocv:2008008
LA  - en
ID  - COCV_2008__14_4_699_0
ER  - 
%0 Journal Article
%A Sanfelice, Ricardo G.
%A Goebel, Rafal
%A Teel, Andrew R.
%T Generalized solutions to hybrid dynamical systems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2008
%P 699-724
%V 14
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv:2008008/
%R 10.1051/cocv:2008008
%G en
%F COCV_2008__14_4_699_0
Sanfelice, Ricardo G.; Goebel, Rafal; Teel, Andrew R. Generalized solutions to hybrid dynamical systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 4, pp. 699-724. doi : 10.1051/cocv:2008008. http://www.numdam.org/articles/10.1051/cocv:2008008/

[1] R.C. Arkin, Behavior Based Robotics. The MIT Press (1998).

[2] J.-P. Aubin and A. Cellina, Differential Inclusions. Springer-Verlag (1984). | MR | Zbl

[3] J.-P. Aubin, J. Lygeros, M. Quincampoix, S.S. Sastry and N. Seube, Impulse differential inclusions: a viability approach to hybrid systems. IEEE Trans. Aut. Cont. 47 (2002) 2-20. | MR

[4] A. Back, J. Guckenheimer and M. Myers, A dynamical simulation facility for hybrid systems, in Hybrid Systems, Lect. Notes Comput. Sci. 36 (1993) 255-267.

[5] D.D. Bainov and P.S. Simeonov, Systems with Impulse Effect: Stability, Theory, and Applications. Ellis Horwood Limited (1989). | MR | Zbl

[6] O. Beker, C.V. Hollot, Y. Chait and H. Han, Fundamental properties of reset control systems. Automatica 40 (2004) 905-915. | MR | Zbl

[7] M. Boccadoro, Y. Wardi, M. Egerstedt and E. Verriest, Optimal control of switching surfaces in hybrid dynamical systems. Discrete Event Dyn. Syst. 15 (2005) 433-448. | MR | Zbl

[8] M.S. Branicky, Studies in hybrid systems: Modeling, analysis, and control. Ph.D. dissertation, Dept. Elec. Eng. and Computer Sci., MIT (1995).

[9] M.S. Branicky, V.S. Borkar and S.K. Mitter, A unified framework for hybrid control: Model and optimal control theory. IEEE Trans. Aut. Cont. 43 (1998) 31-45. | MR | Zbl

[10] R.W. Brocket, Hybrid Models for Motion Control Systems, in Essays on Control: Perspectives in the Theory and its Applications, H.L. Trentelman and J.C. Willems Eds., Birkhäuser (1993) 29-53. | MR | Zbl

[11] M. Broucke and A. Arapostathis, Continuous selections of trajectories of hybrid systems. Systems Control Lett. 47 (2002) 149-157. | MR | Zbl

[12] C. Cai, A.R. Teel and R. Goebel, Converse Lyapunov theorems and robust asymptotic stability for hybrid systems, in Proc. 24th American Control Conference (2005) 12-17.

[13] F. Ceragioli, Some remarks on stabilization by means of discontinuous feedbacks. Systems Control Lett. 45 (2002) 271-281. | MR | Zbl

[14] V. Chellaboina, S.P. Bhat and W.H. Haddad, An invariance principle for nonlinear hybrid and impulsive dynamical systems. Nonlin. Anal. 53 (2003) 527-550. | MR | Zbl

[15] F.H. Clarke, Y.S. Ledyaev, E.D. Sontag and A.I. Subbotin, Asymptotic controllability implies feedback stabilization. IEEE Trans. Aut. Cont. 42 (1997) 1394-1407. | MR | Zbl

[16] J.C. Clegg, A nonlinear integrator for servomechanisms. Transactions A.I.E.E. 77 (Part II) 41-42, 1958.

[17] P. Collins, A trajectory-space approach to hybrid systems, in Proc. 16th MTNS (2004).

[18] P. Collins and J. Lygeros, Computability of finite-time reachable sets for hybrid systems, in Proc. 44th IEEE Conference on Decision Control (2005) 4688-4693.

[19] J.-M. Coron and L. Rosier, A relation between continuous time-varying and discontinuous feedback stabilization. J. Math. Systems Estimation Control 4 (1994) 67-84. | MR | Zbl

[20] M. Egerstedt, Behavior based robotics using hybrid automata, in Hybrid Systems: Computation and Control, Lect. Notes Comput. Sci. 1790 (2000) 103-116. | Zbl

[21] A.F. Filippov, Differential equations with discontinuous right-hand sides (English). Matemat. Sbornik. 151 (1960) 99-128. | MR

[22] M. Garavello and B. Piccoli, Hybrid necessary principle. SIAM J. Control Optim. 43 (2005) 1867-1887. | MR | Zbl

[23] R. Goebel and A.R. Teel, Solutions to hybrid inclusions via set and graphical convergence with stability theory applications. Automatica 42 (2006) 573-587. | MR | Zbl

[24] R. Goebel, J.P. Hespanha, A.R. Teel, C. Cai and R.G. Sanfelice, Hybrid systems: Generalized solutions and robust stability, in Proc. 6th IFAC Symposium in Nonlinear Control Systems (2004) 1-12.

[25] O. Hàjek, Discontinuous differential equations I. J. Diff. Eqn. 32 (1979) 149-170. | Zbl

[26] H. Hermes, Discontinuous vector fields and feedback control, in Differential Equations and Dynamical Systems, J.K. Hale and J.P. LaSalle Eds., Academic Press, New York (1967) 155-165. | MR | Zbl

[27] J.P. Hespanha, Uniform stability of switched linear systems: Extensions of LaSalle's invariance principle. IEEE Trans. Aut. Cont. 49 (2004) 470-482. | MR

[28] J.P. Hespanha, A model for stochastic hybrid systems with application to communication networks. Nonlinear Anal. (Special Issue on Hybrid Systems) 62 (2005) 1353-1383. | MR | Zbl

[29] C.M. Kellet and A.R. Teel, Smooth Lyapunov functions and robustness of stability for differential inclusions. Systems Control Lett. 52 (2004) 395-405. | MR | Zbl

[30] N.N. Krasovskii, Game-Theoretic Problems of Capture. Nauka, Moscow (1970). | MR

[31] N.N. Krasovskii and A.I. Subbotin, Game-Theoretical Control Problems. Springer-Verlag (1988). | MR | Zbl

[32] K.R. Krishnan and I.M. Horowitz, Synthesis of a non-linear feedback system with significant plant-ignorance for prescribed system tolerances. Inter. J. Control 19 (1974) 689-706. | Zbl

[33] J. Lygeros, K.H. Johansson, S.S. Sastry and M. Egerstedt, On the existence of executions of hybrid automata, in Proc. 41st Conference on Decision and Control (1999) 2249-2254.

[34] J. Lygeros, K.H. Johansson, S.N. Simić, J. Zhang and S.S. Sastry, Dynamical properties of hybrid automata. IEEE Trans. Aut. Cont. 48 (2003) 2-17. | MR

[35] A.N. Michel, L. Wang and B. Hu, Qualitative Theory of Dynamical Systems. Dekker (2001). | MR | Zbl

[36] D. Nesic, L. Zaccarian and A.R. Teel, Stability properties of reset systems, in Proc. 16th IFAC World Congress in Prague (2005).

[37] C. Prieur, Asymptotic controllability and robust asymptotic stabilizability. SIAM J. Control Optim. 43 (2005) 1888-1912. | MR | Zbl

[38] C. Prieur, R. Goebel and A.R. Teel, Results on robust stabilization of asymptotically controllable systems by hybrid feedback, in Proc. 44th IEEE Conference on Decision and Control and European Control Conference (2005) 2598-2603.

[39] R.T. Rockafellar and R.J.-B. Wets, Variational Analysis. Springer (1998). | MR | Zbl

[40] A.V. Roup, D.S. Bernstein, S.G. Nersesov, W.M. Haddad and V. Chellaboina, Limit cycle analysis of the verge and foliot clock escapement using impulsive differential equations and Poincaré maps. Inter. J. Control 76 (2003) 1685-1698. | MR | Zbl

[41] R.G. Sanfelice, R. Goebel and A.R. Teel, Results on convergence in hybrid systems via detectability and an invariance principle, in Proc. 24th IEEE American Control Conference (2005) 551-556.

[42] J. Sprinkle, A.D. Ames, A. Pinto, H. Zheng and S.S. Sastry, On the partitioning of syntax and semantics for hybrid systems tools, in Proc. 44th IEEE Conference on Decision and Control and European Control Conference (2005).

[43] S.Y. Tang and R.A. Cheke, State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences. J. Math. Biol. 50 (2005) 257-292. | MR | Zbl

[44] L. Tavernini, Differential automata and their discrete simulators. Nonlin. Anal. 11 (1987) 665-683. | MR | Zbl

[45] L. Tavernini, Generic properties of impulsive hybrid systems. Dynamic Systems & Applications 13 (2004) 533-551. | MR | Zbl

[46] S.E. Tuna, R.G. Sanfelice, M.J. Messina and A.R. Teel, Hybrid MPC: Open-minded but not easily swayed, in Proc. International Workshop on Assessment and Future Directions of Nonlinear Model Predictive Control (2005).

[47] A. Van Der Schaft and H. Schumacher, An Introduction to Hybrid Dynamical Systems, Lecture Notes in Control and Information Sciences. Springer (2000). | MR | Zbl

[48] H.S. Witsenhausen, A class of hybrid-state continuous-time dynamic systems. IEEE Trans. Aut. Cont. 11 (1966) 161-167.

[49] L. Zaccarian, D. Nesic and A.R. Teel, First order reset elements and the Clegg integrator revisited, in Proc. 24th American Control Conference (2005) 563-568.

Cité par Sources :