Neumann boundary value problems across resonance
ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 3, pp. 398-408.

We obtain an existence-uniqueness result for a second order Neumann boundary value problem including cases where the nonlinearity possibly crosses several points of resonance. Optimal and Schauder fixed points methods are used to prove this kind of results.

DOI : https://doi.org/10.1051/cocv:2006009
Classification : 34B15,  47H15
Mots clés : second order Newmann boundary condition, resonance, Pontryagin's maximum principle
@article{COCV_2006__12_3_398_0,
     author = {L\'opez, Gin\'es and Montero-S\'anchez, Juan-Aurelio},
     title = {Neumann boundary value problems across resonance},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {398--408},
     publisher = {EDP-Sciences},
     volume = {12},
     number = {3},
     year = {2006},
     doi = {10.1051/cocv:2006009},
     zbl = {1123.34011},
     mrnumber = {2224820},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2006009/}
}
López, Ginés; Montero-Sánchez, Juan-Aurelio. Neumann boundary value problems across resonance. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 3, pp. 398-408. doi : 10.1051/cocv:2006009. http://www.numdam.org/articles/10.1051/cocv:2006009/

[1] B. Beauzamy, Introduction to Banach Spaces and their Geometry. North Holland, New York. Mathematics Studies 68 (1982). | MR 670943 | Zbl 0491.46014

[2] P. Hartman and A. Wintner, On an oscillation criterion of Liapunoff. Amer. J. Math. 73 (1951) 885-890. | Zbl 0043.08704

[3] A.C. Lazer and D.E. Leach, On a nonlinear two-point boundary value problem. J. Math. Anal. Appl. 26 (1969) 20-27. | Zbl 0195.37701

[4] Y. Li and H. Wang, Neumann boundary value problems for second order ordinary differential equations across resonance. SIAM J. Control Optim. 33 (1995) 1312-11325. | Zbl 0838.34028

[5] J. Mawhin, J.R. Ward and M. Willem, Variational methods and semi-linear elliptic equations. Arch. Rational Mech. Anal. 95 (1986) 269-277. | Zbl 0656.35044

[6] E.R. Pinch, Optimal Control and the Calculus of Variations. Oxford University Press, New York (1993). | MR 1221086 | Zbl 0776.49001

[7] W. Walter, Ordinary differential equations. Springer-Verlag, New York, Graduate Texts in Math. 182 (1998). | MR 1629775 | Zbl 0991.34001