This paper deals with the existence of solutions to the following system:
Classification : 35J45, 35J50, 35J60
Mots clés : semilinear elliptic systems, Nehari manifold, concentration-compactness principle, variational methods
@article{COCV_2013__19_2_574_0, author = {Benrhouma, Mohamed}, title = {Existence of solutions for a semilinear elliptic system}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {574--586}, publisher = {EDP-Sciences}, volume = {19}, number = {2}, year = {2013}, doi = {10.1051/cocv/2012022}, mrnumber = {3049724}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2012022/} }
TY - JOUR AU - Benrhouma, Mohamed TI - Existence of solutions for a semilinear elliptic system JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2013 DA - 2013/// SP - 574 EP - 586 VL - 19 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2012022/ UR - https://www.ams.org/mathscinet-getitem?mr=3049724 UR - https://doi.org/10.1051/cocv/2012022 DO - 10.1051/cocv/2012022 LA - en ID - COCV_2013__19_2_574_0 ER -
Benrhouma, Mohamed. Existence of solutions for a semilinear elliptic system. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 2, pp. 574-586. doi : 10.1051/cocv/2012022. http://www.numdam.org/articles/10.1051/cocv/2012022/
[1] Y. An, Uniqueness of positive solutions for a class of elliptic systems. J. Math. Anal. Appl. 322 (2006) 1071-1082. | MR 2250636 | Zbl 1217.35060
[2] Some critical point theorems and applications. Commun. Pure Appl. Math. 33 (1980) 147-172. | MR 562548 | Zbl 0472.58009
,[3] Symmetry results for semilinear elliptic systems in the whole space. J. Differ. Equ. 163 (2000) 41-56. | MR 1755067 | Zbl 0952.35033
and ,[4] Multiplicity for strongly indefinite semilinear elliptic system. Nonlinear Anal. 72 (2010) 806-821. | MR 2579347 | Zbl 1183.35110
,[5] Positive solutions of semilinear elliptic systems. Commun. Partial Differ. Equ. 17 (1992) 923-940. | MR 1177298 | Zbl 0818.35027
, and ,[6] On a class of elliptic systems in RN. Electron. J. Differ. Equ. 7 (1994) 1-14. | MR 1292598 | Zbl 0809.35020
,[7] Uniqueness of the positive solution for a class of semilinear elliptic systems. Nonlinear Anal. 67 (2007) 1710-1714. | MR 2326023
, and ,[8] Existence and uniqueness of positive solutions of semilinear elliptic systems. Nonlinear Anal. 39 (2000) 559-568. | MR 1727272 | Zbl 0940.35091
,[9] Decay, symmetry and existence of solutions of semilinear elliptic systems. Nonlinear Anal. 33 (1998) 211-234. | MR 1617988 | Zbl 0938.35054
and ,[10] On the variational principle. J. Math. Anal. Appl. 47 (1974) 324-353. | MR 346619 | Zbl 0286.49015
,[11] The existence of nontrivial solutions to a semilinear elliptic system on RN without the Ambrosetti-Rabinowitz condition. Acta Math. Sci. B 30 (2010) 1917-1936. | MR 2778702 | Zbl 1240.35176
and ,[12] Uniqueness of positive solutions for semilinear elliptic systems. J. Math. Anal. Appl. 313 (2006) 761-767. | MR 2183334 | Zbl 1211.35107
,[13] Existence of entire large positive solutions of semilinear elliptic systems, J. Differ. Equ. 164 (2000) 380-394. | MR 1765572 | Zbl 0962.35052
and ,[14] Asymptotically linear elliptic systems. Commun. Partial Differ. Equ. 29 (2004) 925-954. | MR 2059153 | Zbl 1140.35406
and ,[15] P.L. Lions, the concentration-compactness principle in the calculus of variations. The locally compact case, part 1. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1 (1984) 109-145. | Numdam | MR 778970 | Zbl 0541.49009
[16] P.L. Lions, the concentration-compactness principle in the calculus of variations. The locally compact case, part 2. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 2 (1984) 223-283. | Numdam | MR 778974 | Zbl 0704.49004
[17] On a class of nonlinear second-order differential equations. Trans. Amer. Math. Soc. 95 (1960) 101-123. | MR 111898 | Zbl 0097.29501
,[18] Some minimax principles and their applications in nonlinear elliptic equations. J. Anal. Math. 37 (1980) 248-275. | MR 583639 | Zbl 0462.58016
,[19] Some critical point theorems and applications to semilinear elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5 (1978) 215-223. | Numdam | MR 488128 | Zbl 0375.35026
,[20] Nonexistence of positive solutions of Lane-Emden systems. Differ. Integral Equ. 9 (1996) 635-653. | MR 1401429 | Zbl 0868.35032
and ,[21] The Nehari manifold for a semilinear elliptic system involving sign-changing weight functions. Nonlinear Anal. 68 (2008) 1733-1745. | MR 2388846 | Zbl 1151.35342
,Cité par Sources :