@article{AIHPC_1984__1_4_223_0,
author = {Lions, P. L.},
title = {The concentration-compactness principle in the calculus of variations. {The} locally compact case, part 2},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {223--283},
year = {1984},
publisher = {Gauthier-Villars},
volume = {1},
number = {4},
mrnumber = {778974},
zbl = {0704.49004},
language = {en},
url = {https://www.numdam.org/item/AIHPC_1984__1_4_223_0/}
}
TY - JOUR AU - Lions, P. L. TI - The concentration-compactness principle in the calculus of variations. The locally compact case, part 2 JO - Annales de l'I.H.P. Analyse non linéaire PY - 1984 SP - 223 EP - 283 VL - 1 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPC_1984__1_4_223_0/ LA - en ID - AIHPC_1984__1_4_223_0 ER -
%0 Journal Article %A Lions, P. L. %T The concentration-compactness principle in the calculus of variations. The locally compact case, part 2 %J Annales de l'I.H.P. Analyse non linéaire %D 1984 %P 223-283 %V 1 %N 4 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPC_1984__1_4_223_0/ %G en %F AIHPC_1984__1_4_223_0
Lions, P. L. The concentration-compactness principle in the calculus of variations. The locally compact case, part 2. Annales de l'I.H.P. Analyse non linéaire, Tome 1 (1984) no. 4, pp. 223-283. https://www.numdam.org/item/AIHPC_1984__1_4_223_0/
[1] , and , A remark on comparison results for solutions of second order elliptic equations via symmetrization. Preprint.
[2] and , Nonlinear elliptic eigenvalue problems on an infinite strip: global theory of bifurcation and asymptotic bifurcation. To appear in Math. Ann. | Zbl | MR
[3] , Existence of axisymmetric equilibrium figures. Arch. Rat. Mech. Anal., t. 65, 1977, p. 249-261. | Zbl | MR
[4] and , Variational solutions of some nonlinear free boundary problems. Arch. Rat. Mech. Anal., t. 43, 1971, p. 255-271. | Zbl | MR
[5] , and , work in preparation.
[6] and , Nonlinear scalar field equations. I. - Existence of a ground state. Arch. Rat. Mech. Anal., t. 82, 1983, p. 313-346. | Zbl | MR
[7] and , Existence d'ondes solitaires dans des problèmes non linéaires du type Klein-Gordon. C. R. Acad. Sci. Paris, t. 287, 1978, p. 503-506; t. 288, 1979, p. 395-398. | Zbl
[8] and , Nonlinear scalar field equations. II. - Existence of infinitely many solutions. Arch. Rat. Mech. Anal., t. 82, 1983, p. 347-376. | Zbl | MR
[9] and , Existence of stationary states in Nonlinear scalar field equations. In Bifurcation Phenomena in Mathematical Physics and related topics, C. Bardos and D. Bessis (eds.), Reidel, Dordrecht, 1980.
[10] and , Existence d'états multiples dans des equations de champs scalaires non linéaires dans le cas de masse nulle. C. R. Acad. Sci. Paris, t. 297, 1983, p. 267-270. | Zbl | MR
[11] and , work in preparation.
[12] , On the existence and structure of stationary states for a non-linear Klein-Gordon equation. J. Funct. Anal., t. 9, 1972, p. 249-261. | Zbl | MR
[13] , and , Finite amplitude steady waves in stratified fluids. To appear in J. Math. Pures Appl. | Zbl | MR
[14] and , Orbital stability of standing waves for some non-linear Schrödinger equations. Comm. Math. Phys., t. 85, 1982, p. 549-561. | Zbl | MR
[15] , A minimum-maximum principle for a class of nonlinear integral equations. J. Anal. Math., t. 22, 1969, p. 391-419. | Zbl | MR
[16] , On a class of nonlinear elliptic boundary value problems. J. Math. Mech., t. 19, 1970, p. 351-356. | Zbl
[17] , Uniqueness of the ground state solution for Δu - u + u3 = 0 and a variational characterization of other solutions. Arch. Rat. Mech. Anal., t. 46, 1972, p. 81-95. | Zbl | MR
[18] , and , Action minima among solutions to a class of Euclidean scalar field equations. Comm. Math. Phys., t. 58, 1978, p. 211-221. | MR
[19] , Existence d'une infinité d'ondes solitaires pour des équations de champs non linéaires dans le plan. Ann. Fac. Sc. Toulouse, t. II, 1980, p. 181- 191. | Zbl | MR | Numdam
[20] , Nonlinear elliptic problems in strip-like domains; symmetry of positive vortex rings. Nonlinear Anal. T. M. A., t. 7, 1983, p. 365-379. | Zbl | MR
[21] and , A global theory of steady vortex rings in an ideal fluid. Acta Math., 132, 1974, p. 13-51. | Zbl | MR
[22] , and , Symmetry of positive solutions of non-linear elliptic equations in Rn. In Math. Anal. Appl., part 1, L. Nachbin (ed.), Academic Press, 1981.
[23] and , The Hartree-Fock theory for Coulomb systems. Comm. Math. Phys., t. 53, 1974, p. 185-194. | MR
[24] , The concentration-compactness principle in the Calculus of Variations. The locally compact case, part 1. Ann. I. H. P. Anal. non linéaire, t. 1, 1984, p. 109-145. | Zbl | MR | Numdam
[25] , Compactness and topological methods for some nonlinear variational problems of Mathematical Physics. In Nonlinear Problems : Present and Future ; A. R. Bishop, D. K. CAMPBELL, B. Nicolaenko (eds.), North-Holland, Amsterdam, 1982. | Zbl | MR
[26] , Symmetry and compactness in Sobolev spaces. J. Funct. Anal., t. 49, 1982, p. 315-334. | Zbl | MR
[27] , Principe de concentration-compacité en Calcul des Variations. C. R. Acad. Sci. Paris, t. 294, 1982, p. 261-264. | Zbl | MR
[28] , On the concentration-compactness principle. In Contributions to Nonlinear Partial Differential Equations, Pitman, London, 1983. | Zbl | MR
[29] , Some remarks on Hartree equations. Nonlinear Anal. T. M. A., t. 5, 1981, p. 1245-1256. | Zbl | MR
[30] , Minimization problems in L1(RN). J. Funct. Anal., t. 49, 1982, p. 315-334.
[31] , The concentration-compactness principle in the Calculus of Variations. The limit case. To appear in Revista Matematica Iberoamericana. | Zbl | MR
[32] , La méthode de concentration-compacité en Calcul des Variations. In Séminaire Goulaouic-Meyer-Schwartz, 1982-1983, École Polytechnique, Palaiseau, 1983. | MR | Numdam
[33] , Applications de la méthode de concentration-compacité à l'existence de fonctions extrêmales. C. R. Acad. Sci. Paris, t. 296, 1983, p. 645-648. | Zbl | MR
[34] , On a nonlinear differential equation arising in Nuclear physics. Proc. R. Irish Acad., t. 62, 1963, p. 117-135. | Zbl | MR
[35] , Eigenfunctions of the equation Δu + λf(u) = 0. Soviet Math. Dokl., t. 165, 1965, p. 1408-1412. | Zbl | MR
[36] , Boundary value problems for a class of nonlinear differential equations. Pac. J. Math., t. 22, 1967, p. 477-503. | Zbl | MR
[37] , Existence of solitary waves in higher dimensions. Comm. Math. Phys., t. 55, 1977, p. 149-162. | Zbl | MR
[38] , Multiple solutions of differential equations without the Palais-Smale condition. Math. Ann., t. 261, 1982, p. 399-412. | Zbl | MR
[39] , Self-focusing of very powerful laser beams. U. S. Dept of Commerce. N. B. S. Special Publication 387.
[40] , Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa, t. 3, 1976, p. 697-718. | Zbl | MR | Numdam
[41] , The existence of a non-minimal solution to the SU(2) Yang-Mills-Hoggs equations on R3. Comm. Math. Phys., t. 86, 1982, p. 257 ; t. 86, 1982, p. 299. | Zbl






