We study an optimal boundary control problem for the two dimensional unsteady linearized compressible Navier-Stokes equations in a rectangle. The control acts through the Dirichlet boundary condition. We first establish the existence and uniqueness of the solution for the two-dimensional unsteady linearized compressible Navier-Stokes equations in a rectangle with inhomogeneous Dirichlet boundary data, not necessarily smooth. Then, we prove the existence and uniqueness of the optimal solution over the control set. Finally we derive an optimality system from which the optimal solution can be determined.
Keywords: optimal control, linearized compressible Navier-Stokes equations, boundary control, optimality system
@article{COCV_2013__19_2_587_0, author = {Chowdhury, Shirshendu and Ramaswamy, Mythily}, title = {Optimal control of linearized compressible {Navier-Stokes} equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {587--615}, publisher = {EDP-Sciences}, volume = {19}, number = {2}, year = {2013}, doi = {10.1051/cocv/2012023}, mrnumber = {3049725}, zbl = {1266.49006}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2012023/} }
TY - JOUR AU - Chowdhury, Shirshendu AU - Ramaswamy, Mythily TI - Optimal control of linearized compressible Navier-Stokes equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2013 SP - 587 EP - 615 VL - 19 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2012023/ DO - 10.1051/cocv/2012023 LA - en ID - COCV_2013__19_2_587_0 ER -
%0 Journal Article %A Chowdhury, Shirshendu %A Ramaswamy, Mythily %T Optimal control of linearized compressible Navier-Stokes equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2013 %P 587-615 %V 19 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2012023/ %R 10.1051/cocv/2012023 %G en %F COCV_2013__19_2_587_0
Chowdhury, Shirshendu; Ramaswamy, Mythily. Optimal control of linearized compressible Navier-Stokes equations. ESAIM: Control, Optimisation and Calculus of Variations, Volume 19 (2013) no. 2, pp. 587-615. doi : 10.1051/cocv/2012023. http://www.numdam.org/articles/10.1051/cocv/2012023/
[1] Representation and Control of Infinite Dimensional Systems, 2nd edition. Birkhäuser (2006). | MR | Zbl
, , and ,[2] Mathematical analysis and numerical methods for science and technology, in Evolution Problems. I. With the collaboration of M. Artola, M. Cessenat and H. Lanchon. Translated from the French by A. Craig. Springer-Verlag, Berlin 5 (1992). | MR | Zbl
and ,[3] Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992). | MR | Zbl
and ,[4] Transport and propagation of a perturbation of a flow of a compressible fluid in a bounded region. Arch. Rational Mech. Anal. 100 (1987) 53-81. | MR | Zbl
and ,[5] Quelques problémes aux limites pour les équations de Navier-Stokes compressibles. Ph.D. thesis, Université de Toulouse (2008).
,[6] The velocity tracking problem for Navier-Stokes flows with boundary control. SIAM J. Control Optim. 39 (2000) 594-634. | MR | Zbl
and ,[7] A two-dimensional problem of unsteady flow of an ideal incompressible fluid across a given domain. Amer. Math. Soc. Trans. 57 (1966) 277-304 [previously in Mat. Sb. (N.S.) 64 (1964) 562-588 (in Russian)]. | MR
,[8] A semigroup generated by the linearized Navier-Stokes equations for compressible fluid and its uniform growth bound in Hölder spaces. Navier-Stokes equations: theory and numerical methods (Varenna, 1997), Pitman. Research Notes Math. Ser. 388 (1998) 86-100. | MR | Zbl
,[9] Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions. Ann. Inst. Henri Poincaré Anal. Non Linéaire 24 (2007) 921-951. | MR | Zbl
,[10] Control localized on thin structures for the linearized Boussinesq system. J. Optim. Theory Appl. 141 (2009) 147-165. | MR | Zbl
and ,[11] Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys. 103 (1986) 259-296. | MR | Zbl
and ,Cited by Sources: