Partial differential equations
Blow-up dynamics for the hyperbolic vanishing mean curvature flow of surfaces asymptotic to a Simons cone
[Sur la formation de singularités pour le flot hyperbolique de courbure moyenne nulle de surfaces asymptotiques au cône de Simons]
Comptes Rendus. Mathématique, Tome 357 (2019) no. 10, pp. 778-783.

Dans cette note, on étabit l'existence d'une famille de surfaces (Γ(t))0<tT qui évoluent sous le flot de courbure moyenne nulle dans l'espace de Minkowski et qui explosent lorsque t tend vers 0 vers une surface asymptotique au cône de Simons à l'infini. Ce problème revient à étudier la formation de singularités pour une équation d'ondes quasi-linéaire du second ordre. Notre approche constructive consiste à démontrer l'existence de solutions à cette équation hyperbolique explosant en temps fini sous la forme u(t,x)tν+1Q(xtν+1), où Q est une solution stationnaire et ν>1/2 est un nombre irrationnel. Notre démarche s'inspire de celle de Krieger, Schlag et Tataru dans [7–9]. Cependant contrairement à ces travaux, l'équation en question dans cette note est quasi-linéaire, ce qui génère des difficultés que l'on doit surmonter.

In this paper, we establish the existence of a family of surfaces (Γ(t))0<tT that evolve by the vanishing mean curvature flow in Minkowski space and, as t tends to 0, blow up towards a surface that behaves like the Simons cone at infinity. This issue amounts to investigate the singularity formation for a second-order quasilinear wave equation. Our constructive approach consists in proving the existence of a finite-time blow-up solution to this hyperbolic equation under the form u(t,x)tν+1Q(xtν+1), where Q is a stationary solution and ν is an irrational number strictly larger than 1/2. Our strategy roughly follows that of Krieger, Schlag and Tataru in [7–9]. However, contrary to these articles, the equation to be handled in this work is quasilinear. This induces a number of difficulties to face.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2019.10.001
Bahouri, Hajer 1 ; Marachli, Alaa 1 ; Perelman, Galina 1

1 Université Paris-Est Créteil, UMR 8050, 61, avenue du Général-de-Gaulle, 94010 Créteil cedex, France
@article{CRMATH_2019__357_10_778_0,
     author = {Bahouri, Hajer and Marachli, Alaa and Perelman, Galina},
     title = {Blow-up dynamics for the hyperbolic vanishing mean curvature flow of surfaces asymptotic to a {Simons} cone},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {778--783},
     publisher = {Elsevier},
     volume = {357},
     number = {10},
     year = {2019},
     doi = {10.1016/j.crma.2019.10.001},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2019.10.001/}
}
TY  - JOUR
AU  - Bahouri, Hajer
AU  - Marachli, Alaa
AU  - Perelman, Galina
TI  - Blow-up dynamics for the hyperbolic vanishing mean curvature flow of surfaces asymptotic to a Simons cone
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 778
EP  - 783
VL  - 357
IS  - 10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2019.10.001/
DO  - 10.1016/j.crma.2019.10.001
LA  - en
ID  - CRMATH_2019__357_10_778_0
ER  - 
%0 Journal Article
%A Bahouri, Hajer
%A Marachli, Alaa
%A Perelman, Galina
%T Blow-up dynamics for the hyperbolic vanishing mean curvature flow of surfaces asymptotic to a Simons cone
%J Comptes Rendus. Mathématique
%D 2019
%P 778-783
%V 357
%N 10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2019.10.001/
%R 10.1016/j.crma.2019.10.001
%G en
%F CRMATH_2019__357_10_778_0
Bahouri, Hajer; Marachli, Alaa; Perelman, Galina. Blow-up dynamics for the hyperbolic vanishing mean curvature flow of surfaces asymptotic to a Simons cone. Comptes Rendus. Mathématique, Tome 357 (2019) no. 10, pp. 778-783. doi : 10.1016/j.crma.2019.10.001. http://www.numdam.org/articles/10.1016/j.crma.2019.10.001/

[1] Bahouri, H.; Chemin, J.-Y.; Danchin, R. Fourier Analysis and Applications to Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wisserchaften, vol. 343, Springer Verlag, 2011

[2] Bahouri, H.; Marachli, A.; Perelman, G. Blow up dynamics for the hyperbolic vanishing mean curvature flow of surfaces asymptotic to Simons cone hal.archives-ouvertes.fr/

[3] Bombieri, E.; De Giorgi, E.; Giusti, E. Minimal cones and the Bernstein problem, Invent. Math., Volume 7 (1969), pp. 243-268

[4] Collot, C. Type II Blow up Manifolds for the Energy Supercritical Wave Equation, Memoirs of the American Mathematical Society, vol. 252, 2018

[5] Hörmander, L. Lectures on Nonlinear Hyperbolic Differential Equations, Mathematics and Applications, vol. 26, Springer, Berlin, 1996

[6] John, F. Blow-up of solutions of nonlinear wave equations in three space dimensions, Proc. Natl. Acad. Sci. USA, Volume 76 (1979), pp. 1559-1560

[7] Krieger, J.; Schlag, W.; Tataru, D. Renormalization and blow up for charge one equivariant critical wave maps, Invent. Math., Volume 171 (2008), pp. 543-615

[8] Krieger, J.; Schlag, W.; Tataru, D. Renormalization and blow up for the critical Yang-Mills problem, Adv. Math., Volume 221 (2009), pp. 1445-1521

[9] Krieger, J.; Schlag, W.; Tataru, D. Slow blow up solutions for the H1(R3) critical focusing semi-linear wave equation, Duke Math. J., Volume 147 (2009), pp. 1-53

[10] Merle, F.; Raphaël, P.; Rodnianski, I. Blow up dynamics of smooth equivariant solutions to the energy critical Schrödinger map, Invent. Math., Volume 193 (2013), pp. 249-365

[11] Perelman, G. Blow up dynamics for equivariant critical Schrödinger maps, Commun. Math. Phys., Volume 330 (2014), pp. 69-105

[12] Raphaël, P.; Rodnianski, I. Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems, Publ. Math. IHÉS, Volume 115 (2012), pp. 1-122

[13] Simons, J. Minimal varieties in Riemannian manifolds, Ann. of Math. (2), Volume 88 (1968), pp. 62-106

[14] Taylor, M.-E. Partial Differential Equations III, Nonlinear Equations, Applied Mathematical Sciences, vol. 117, Springer-Verlag, 2011

[15] Velázquez, J.-L.L. Curvature blow-up in perturbations of minimal cones evolving by mean curvature flow, Ann. Sc. Norm. Super. Pisa, Volume 21 (1994), pp. 595-628

Cité par Sources :