Lie algebras/Group theory
Branching problems for semisimple Lie groups and reproducing kernels
[Règles de branchement pour les groupes de Lie semi-simples et les noyaux reproduisants]
Comptes Rendus. Mathématique, Tome 357 (2019) no. 9, pp. 697-707.

Pour un groupe de Lie semi-simple G satisfaisant la condition de rang, la famille de représentations irréductibles unitaires la plus fondamentale est la série discrète trouvée par Harish-Chandra. Dans cet article, nous étudions quelques règles de branchement pour ces séries restreintes à un sous-groupe H de G du même type, en combinant les résultats classiques avec des travaux récents de T. Kobayashi. Nous analysons des cas où des opérateurs de brisure de symétrie sont des opérateurs différentiels ; en particulier, nous prouvons dans le cas dit admissible que tout opérateur de brisure de symétries H-équivariant est un opérateur différentiel. Nous prouvons la propriété de décomposabilité discrète sous la condition de cuspidalité de Harish-Chandra sur les noyaux reproduisants.

For a semisimple Lie group G satisfying the equal rank condition, the most basic family of unitary irreducible representations is the discrete series found by Harish-Chandra. In this paper, we study some of the branching laws for these when restricted to a subgroup H of the same type by combining the classical results with the recent work of T. Kobayashi. We analyze aspects of having differential operators being symmetry-breaking operators; in particular, we prove in the so-called admissible case that every symmetry breaking (H-map) operator is a differential operator. We prove discrete decomposability under Harish-Chandra's condition of cusp form on the reproducing kernels. Our techniques are based on realizing discrete series representations as kernels of elliptic invariant differential operators.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2019.09.004
Ørsted, Bent 1 ; Vargas, Jorge A. 2

1 Aarhus University, Mathematics Department, 8000 Aarhus C, Denmark
2 FAMAF–CIEM, Ciudad Universitaria, 5000 Córdoba, Argentina
@article{CRMATH_2019__357_9_697_0,
     author = {{\O}rsted, Bent and Vargas, Jorge A.},
     title = {Branching problems for semisimple {Lie} groups and reproducing kernels},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {697--707},
     publisher = {Elsevier},
     volume = {357},
     number = {9},
     year = {2019},
     doi = {10.1016/j.crma.2019.09.004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2019.09.004/}
}
TY  - JOUR
AU  - Ørsted, Bent
AU  - Vargas, Jorge A.
TI  - Branching problems for semisimple Lie groups and reproducing kernels
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 697
EP  - 707
VL  - 357
IS  - 9
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2019.09.004/
DO  - 10.1016/j.crma.2019.09.004
LA  - en
ID  - CRMATH_2019__357_9_697_0
ER  - 
%0 Journal Article
%A Ørsted, Bent
%A Vargas, Jorge A.
%T Branching problems for semisimple Lie groups and reproducing kernels
%J Comptes Rendus. Mathématique
%D 2019
%P 697-707
%V 357
%N 9
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2019.09.004/
%R 10.1016/j.crma.2019.09.004
%G en
%F CRMATH_2019__357_9_697_0
Ørsted, Bent; Vargas, Jorge A. Branching problems for semisimple Lie groups and reproducing kernels. Comptes Rendus. Mathématique, Tome 357 (2019) no. 9, pp. 697-707. doi : 10.1016/j.crma.2019.09.004. http://www.numdam.org/articles/10.1016/j.crma.2019.09.004/

[1] Atiyah, M.F. Elliptic operators, discrete groups and von Neumann algebras, Colloque analyse et topologie en l'honneur d'Henri Cartan. Astérisque, Volume 32–33 (1976), pp. 43-73

[2] Clerc, J.L. Covariant bi-differential operators on matrix space, Ann. Inst. Fourier (Grenoble), Volume 67 (2017) no. 4, pp. 1427-1455

[3] van Dijk, G.; Pevzner, M. Berezin kernels of tube domains, J. Funct. Anal., Volume 181 (2001), pp. 189-208

[4] Duflo, M.; Heckman, G.; Vergne, M. Projection d'orbites, formule de Kirillov et formule de Blattner, Harmonic analysis on Lie groups and symmetric spaces (Kleebach, 1983) (Mém. Soc. Math. Fr. (N. S.)), Volume 15 (1984), pp. 65-128

[5] Duflo, M.; Vargas, J. Branching laws for square integrable representations, Proc. Jpn. Acad., Ser. A, Math. Sci., Volume 86 (2010) no. 3, pp. 49-54

[6] Gross, B.; Wallach, N. Restriction of small discrete series representations to symmetric subgroups, Baltimore, MD, 1998 (Proc. Sympos. Pure Math.), Volume vol. 68 (2000), pp. 255-272

[7] Harish-Chandra Discrete series for semisimple Lie groups II, Acta Math., Volume 116 (1996), pp. 1-111

[8] Harris, B.; He, H.; Olafsson, G. The continuous spectrum in discrete series branching laws, Int. J. Math., Volume 24 (2013) no. 7, pp. 49-129

[9] Howe, R. Reciprocity laws in the theory of dual pairs, Prog. Math., Volume 40 (1983), pp. 159-176

[10] Jacobsen, H.P.; Vergne, M. Restrictions and extensions of holomorphic representations, J. Funct. Anal., Volume 14 (1979), pp. 29-53

[11] Kobayashi, T. Discrete decomposability of the restriction of Aq(λ) with respect to reductive subgroups III, Invent. Math., Volume 131 (1997), pp. 229-256

[12] Kobayashi, T. Discrete series representations for the orbit spaces arising from two involutions of real reductive groups, J. Funct. Anal., Volume 152 (1998) no. 1, pp. 100-135

[13] Kobayashi, T. (Prog. in Math.), Volume vol. 229, Edts. Anker-Ørsted (2005), pp. 139-209

[14] Kobayashi, T. A program for branching problems in the representation theory of real reductive groups (Nevins, M.; Trapa, P., eds.), Representations of Reductive Groups: In Honor of the 60th Birthday of David A. Vogan, Progress in Mathematics, vol. 312, 2015, pp. 277-322

[15] Kobayashi, T.; Oshima, Y. Classification of discretely decomposable Aq(λ) with respect to reductive symmetric pairs, Adv. Math., Volume 231 (2012), pp. 2013-2047

[16] Kobayashi, T.; Oshima, Y. Finite multiplicity theorems for induction and restriction, Adv. Math., Volume 248 (2013), pp. 921-944

[17] Kobayashi, T.; Pevzner, M. Differential symmetry breaking operators. I. General theory and F-method, Sel. Math. New Ser., Volume 22 (2016) no. 2, pp. 801-845

[18] Kobayashi, T.; Pevzner, M. Differential symmetry breaking operators. II. Rankin-Cohen operators for symmetric pairs, Sel. Math. New Ser., Volume 22 (2016) no. 2, pp. 847-911

[19] Möllers, J.; Ørsted, B.; Zhang, G. Invariant differential operators on H-type groups and discrete components in restrictions of complementary series of rank one semisimple groups, J. Geom. Anal., Volume 26 (2016) no. 1, pp. 118-142

[20] Nakahama, R. Construction of intertwining operators between holomorphic discrete series representations, SIGMA, Volume 15 (2019) (101 pages)

[21] Ørsted, B.; Vargas, J. Restriction of Discrete Series representations (Discrete spectrum), Duke Math. J., Volume 123 (2004), pp. 609-631

[22] Wallach, N. Real Reductive Groups I, Academic Press, 1988

[23] Wong, H.-W. Dolbeault cohomological realization of Zuckerman modules associated with finite rank representations, J. Funct. Anal., Volume 129 (1995) no. 2, pp. 428-454

Cité par Sources :