Partial differential equations/Optimal control
Stabilization of the wave equations with localized Kelvin–Voigt type damping under optimal geometric conditions
Comptes Rendus. Mathématique, Volume 357 (2019) no. 3, pp. 272-277.

The purpose of this note is to investigate the stabilization of the wave equation with Kelvin–Voigt damping in a bounded domain. Damping is localized via a non-smooth coefficient in a suitable subdomain. We prove a polynomial stability result in any space dimension, provided that the damping region satisfies some geometric conditions. The main novelty of this note is that the geometric situations covered here are richer than that considered in [25], [22], [16] and include in particular an example where the damping region is not localized in a neighborhood of the whole or a part of the boundary.

Nous nous intéressons à l'étude de la stabilisation d'une équation des ondes avec un amortissement de type Kelvin–Voigt dans un domaine borné. L'amortissement est localisé via un coefficient singulier dans une partie du domaine. Nous montrons un résultat de stabilisation polynomiale en toute dimension d'espace dès que la région d'amortissement satisfait certaines conditions géométriques. La principale nouveauté de cette note est que les situations géométriques couvertes ici sont plus riches que celles considérées dans [25], [22], [16] et incluent notamment un exemple où la région d'amortissement n'est pas localisée dans un voisinage de la totalité ou d'une partie de la frontière.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2019.01.005
Nasser, Rayan 1, 2; Noun, Nahla 3; Wehbe, Ali 3

1 Université libanaise, EDST & Hadath, Beyrouth, Liban
2 Université de Bretagne occidentale, France
3 Université libanaise, Faculté des sciences 1 et EDST & Hadath, Beyrouth, Liban
@article{CRMATH_2019__357_3_272_0,
     author = {Nasser, Rayan and Noun, Nahla and Wehbe, Ali},
     title = {Stabilization of the wave equations with localized {Kelvin{\textendash}Voigt} type damping under optimal geometric conditions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {272--277},
     publisher = {Elsevier},
     volume = {357},
     number = {3},
     year = {2019},
     doi = {10.1016/j.crma.2019.01.005},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2019.01.005/}
}
TY  - JOUR
AU  - Nasser, Rayan
AU  - Noun, Nahla
AU  - Wehbe, Ali
TI  - Stabilization of the wave equations with localized Kelvin–Voigt type damping under optimal geometric conditions
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 272
EP  - 277
VL  - 357
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2019.01.005/
DO  - 10.1016/j.crma.2019.01.005
LA  - en
ID  - CRMATH_2019__357_3_272_0
ER  - 
%0 Journal Article
%A Nasser, Rayan
%A Noun, Nahla
%A Wehbe, Ali
%T Stabilization of the wave equations with localized Kelvin–Voigt type damping under optimal geometric conditions
%J Comptes Rendus. Mathématique
%D 2019
%P 272-277
%V 357
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2019.01.005/
%R 10.1016/j.crma.2019.01.005
%G en
%F CRMATH_2019__357_3_272_0
Nasser, Rayan; Noun, Nahla; Wehbe, Ali. Stabilization of the wave equations with localized Kelvin–Voigt type damping under optimal geometric conditions. Comptes Rendus. Mathématique, Volume 357 (2019) no. 3, pp. 272-277. doi : 10.1016/j.crma.2019.01.005. http://www.numdam.org/articles/10.1016/j.crma.2019.01.005/

[1] Ammari, K.; Hassine, F.; Robbiano, L. Stabilization for the wave equation with singular Kelvin–Voigt damping, 05 2018 | arXiv

[2] Bardos, C.; Lebeau, G.; Rauch, J. Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., Volume 30 (1992) no. 5, pp. 1024-1065

[3] Bátkai, A.; Engel, K.-J.; Prüss, J.; Shnaubelt, R. Polynomial stability of operator semigroup, Math. Nachr., Volume 279 (2006), pp. 1425-1440

[4] Batty, C.J.K.; Duyckaerts, T. Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., Volume 8 (2008) no. 4, pp. 765-780

[5] Borichev, A.; Tomilov, Y. Optimal polynomial decay of functions and operator semigroups, Math. Ann., Volume 347 (2010) no. 2, pp. 455-478

[6] Cavalcanti, M.M.; Domingos Cavalcanti, V.; Tebou, L.T. Stabilization of the wave equation with localized compensating frictional and Kelvin–Voigt dissipating mechanisms, Electron. J. Differ. Equ., Volume 59 (2017) no. 2, pp. 1-18

[7] Chen, S.; Liu, K.; Liu, Z. Spectrum and stability for elastic systems with global or local Kelvin–Voigt damping, SIAM J. Appl. Math., Volume 59 (1998) no. 2, pp. 651-668

[8] Huang, F. On the mathematical model for linear elastic systems with analytic damping, SIAM J. Control Optim., Volume 26 (1988) no. 3, pp. 714-724

[9] Huang, F.L. Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differ. Equ., Volume 1 (1985) no. 1, pp. 43-56

[10] Lebeau, G. Équation des ondes amorties, Kaciveli, 1993 (Math. Phys. Stud.), Volume vol. 19, Kluwer Acad. Publ., Dordrecht, the Netherlands (1996), pp. 73-109

[11] Lions, J. Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués: Perturbations, Recherches en mathématiques appliquées, Masson, Paris, 1988

[12] Liu, K. Locally distributed control and damping for the conservative systems, SIAM J. Control Optim., Volume 35 (1997) no. 5, pp. 1574-1590

[13] Liu, K.; Liu, Z. Exponential decay of energy of the Euler–Bernoulli beam with locally distributed Kelvin–Voigt damping, SIAM J. Control Optim., Volume 36 (1998) no. 3, pp. 1086-1098

[14] Liu, K.; Liu, Z. Exponential decay of energy of vibrating strings with local viscoelasticity, Z. Angew. Math. Phys., Volume 53 (2002) no. 2, pp. 265-280

[15] Liu, K.; Liu, Z.; Zhang, Q. Eventual differentiability of a string with local Kelvin–Voigt damping, ESAIM Control Optim. Calc. Var., Volume 23 (2017) no. 2, pp. 443-454

[16] Liu, K.; Rao, B. Exponential stability for the wave equations with local Kelvin–Voigt damping, Z. Angew. Math. Phys., Volume 57 (2006) no. 3, pp. 419-432

[17] Liu, Z.; Rao, B. Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., Volume 56 (2005) no. 4, pp. 630-644

[18] Liu, Z.; Zhang, Q. Stability of a string with local Kelvin–Voigt damping and nonsmooth coefficient at interface, SIAM J. Control Optim., Volume 54 (2016) no. 4, pp. 1859-1871

[19] Nicaise, S.; Pignotti, C. Stability of the wave equation with localized Kelvin–Voigt damping and boundary delay feedback, Discrete Contin. Dyn. Syst., Ser. S, Volume 9 (2016) no. 3, pp. 791-813

[20] Prüss, J. On the spectrum of C0-semigroups, Trans. Amer. Math. Soc., Volume 284 (1984) no. 2, pp. 847-857

[21] Rauch, J.; Taylor, M.; Phillips, R. Exponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J., Volume 24 (1974) no. 1, pp. 79-86

[22] Tebou, L. A constructive method for the stabilization of the wave equation with localized Kelvin–Voigt damping, C. R. Acad. Sci. Paris, Ser. I, Volume 350 (2012) no. 11, pp. 603-608

[23] Zhang, Q. Exponential stability of an elastic string with local Kelvin–Voigt damping, Z. Angew. Math. Phys., Volume 61 (2010) no. 6, pp. 1009-1015

[24] Zhang, Q. On the lack of exponential stability for an elastic–viscoelastic waves interaction system, Nonlinear Anal., Real World Appl., Volume 37 (2017), pp. 387-411

[25] Zhang, Q. Polynomial decay of an elastic/viscoelastic waves interaction system, Z. Angew. Math. Phys., Volume 69 (2018) no. 4, p. 88

Cited by Sources: