Harmonic analysis
Time-frequency analysis on the adeles over the rationals
[Analyse des temps-fréquences sur l'anneau des adèles des rationnels]
Comptes Rendus. Mathématique, Tome 357 (2019) no. 2, pp. 188-199.

Nous montrons que la construction de trames (ou repères) de Gabor de L2(R) avec générateurs dans S0(R) et des décalages de temps-fréquence dans un réseau rectangulaire αZ×βZ est équivalente à la construction de certaines trames de Gabor pour L2 sur les adèles des rationnels avec le groupe R×Qp. Nous analysons également les relations entre la construction de trames de Gabor sur les adèles et sur R×Qp et la construction de certains modules de Heisenberg.

We show that the construction of Gabor frames in L2(R) with generators in S0(R) and with respect to time-frequency shifts from a rectangular lattice αZ×βZ is equivalent to the construction of certain Gabor frames for L2 over the adeles over the rationals and the group R×Qp. Furthermore, we detail the connection between the construction of Gabor frames on the adeles and on R×Qp with the construction of certain Heisenberg modules.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2018.12.004
Enstad, Ulrik B.R. 1 ; Jakobsen, Mads S. 2 ; Luef, Franz 2

1 University of Oslo, Department of Mathematics, Oslo, Norway
2 Norwegian University of Science and Technology, Department of Mathematical Sciences, Trondheim, Norway
@article{CRMATH_2019__357_2_188_0,
     author = {Enstad, Ulrik B.R. and Jakobsen, Mads S. and Luef, Franz},
     title = {Time-frequency analysis on the adeles over the rationals},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {188--199},
     publisher = {Elsevier},
     volume = {357},
     number = {2},
     year = {2019},
     doi = {10.1016/j.crma.2018.12.004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2018.12.004/}
}
TY  - JOUR
AU  - Enstad, Ulrik B.R.
AU  - Jakobsen, Mads S.
AU  - Luef, Franz
TI  - Time-frequency analysis on the adeles over the rationals
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 188
EP  - 199
VL  - 357
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2018.12.004/
DO  - 10.1016/j.crma.2018.12.004
LA  - en
ID  - CRMATH_2019__357_2_188_0
ER  - 
%0 Journal Article
%A Enstad, Ulrik B.R.
%A Jakobsen, Mads S.
%A Luef, Franz
%T Time-frequency analysis on the adeles over the rationals
%J Comptes Rendus. Mathématique
%D 2019
%P 188-199
%V 357
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2018.12.004/
%R 10.1016/j.crma.2018.12.004
%G en
%F CRMATH_2019__357_2_188_0
Enstad, Ulrik B.R.; Jakobsen, Mads S.; Luef, Franz. Time-frequency analysis on the adeles over the rationals. Comptes Rendus. Mathématique, Tome 357 (2019) no. 2, pp. 188-199. doi : 10.1016/j.crma.2018.12.004. http://www.numdam.org/articles/10.1016/j.crma.2018.12.004/

[1] Ahmad, O.; Shah, F.A.; Sheik, N.A. Gabor frames on non-Archimedean fields, Int. J. Geom. Methods Mod. Phys., Volume 15 (2018) no. 05

[2] Albeverio, S.; Evdokimov, S.; Skopina, M. p-adic multiresolution analysis and wavelet frames, Fourier Anal. Appl., Volume 16 (2010) no. 5, pp. 693-714

[3] J.J. Benedetto, R.L. Benedetto, Frames of translates for number-theoretic groups, ArXiv e-prints, 2018.

[4] Christensen, O. An Introduction to Frames and Riesz Bases, Applied and Numerical Harmonic Analysis, Birkhäuser, Basel, 2016

[5] Christensen, O.; Goh, S.S. Fourier-like frames on locally compact Abelian groups, J. Approx. Theory, Volume 192 (2015), pp. 82-101

[6] Dai, X.-R.; Sun, Q. The abc-problem for Gabor systems, Mem. Amer. Math. Soc., Volume 244 (2016) no. 1152 (ix+99)

[7] Deitmar, A. Automorphe Formen, Springer, Heidelberg, Germany, 2010

[8] Feichtinger, H.G. On a new Segal algebra, Monatshefte Math., Volume 92 (1981), pp. 269-289

[9] Feichtinger, H.G. Modulation Spaces on Locally Compact Abelian Groups, University of Vienna, January 1983 (Technical report)

[10] Feichtinger, H.G. Modulation spaces of locally compact Abelian groups, Chennai, January 2002 (Radha, R.; Krishna, M.; Thangavelu, S., eds.), Allied Publishers, New Delhi (2003), pp. 1-56

[11] Feichtinger, H.G. Modulation spaces: looking back and ahead, Sampl. Theory Signal Image Process., Int. J., Volume 5 (2006) no. 2, pp. 109-140

[12] Feichtinger, H.G.; Zimmermann, G. A Banach space of test functions for Gabor analysis (Feichtinger, H.G.; Strohmer, T., eds.), Gabor Analysis and Algorithms: Theory and Applications, Applied and Numerical Harmonic Analysis, Birkhäuser, Boston, 1998, pp. 123-170

[13] Gröchenig, K. Aspects of Gabor analysis on locally compact Abelian groups (Feichtinger, H.G.; Strohmer, T., eds.), Gabor Analysis and Algorithms: Theory and Applications, Applied and Numerical Harmonic Analysis, Birkhäuser, Boston, MA, USA, 1998, pp. 123-170

[14] Gröchenig, K. Foundations of Time-Frequency Analysis, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, MA, USA, 2001

[15] Gröchenig, K. A pedestrian's approach to pseudodifferential operators (Heil, C., ed.), Harmonic Analysis and Applications, Volume in Honor of John J. Benedetto's 65th Birthday, Birkhäuser Boston, Boston, MA, 2006, pp. 139-169

[16] Gröchenig, K.; Leinert, M. Wiener's lemma for twisted convolution and Gabor frames, J. Amer. Math. Soc., Volume 17 (2004), pp. 1-18

[17] Gröchenig, K.; Romero, J.L.; Stöckler, J. Sampling theorems for shift-invariant spaces, Gabor frames, and totally positive functions, Invent. Math., Volume 211 (2018) no. 3, pp. 1119-1148

[18] Gröchenig, K.; Stöckler, J. Gabor frames and totally positive functions, Duke Math. J., Volume 162 (2013) no. 6, pp. 1003-1031

[19] Gröchenig, K.; Strohmer, T. Pseudodifferential operators on locally compact abelian groups and Sjöstrand's symbol class, J. Reine Angew. Math., Volume 613 (2007), pp. 121-146

[20] Havin, V.P.; Nikol'skij, N.K. Commutative Harmonic Analysis II. Group Methods in Commutative Harmonic Analysis, Springer, Berlin, 1998 (Translated from Russian)

[21] Hewitt, E.; Ross, K.A. Abstract Harmonic Analysis I, Grundlehren Math. Wiss., vol. 115, Springer, Berlin, 1963

[22] Jakobsen, M.S. On a (no longer) new Segal algebra: a review of the Feichtinger algebra, J. Fourier Anal. Appl., Volume 24 (2018) no. 6, pp. 1579-1660

[23] Jakobsen, M.S.; Lemvig, J. Density and duality theorems for regular Gabor frames, J. Funct. Anal., Volume 270 (2016) no. 1, pp. 229-263

[24] M.S. Jakobsen, F. Luef, Duality of Gabor frames and Heisenberg modules, ArXiv e-prints, 2018.

[25] Janssen, A.J.E.M. Zak transforms with few zeros and the tie (Feichtinger, H.G.; Strohmer, T., eds.), Advances in Gabor Analysis, Applied and Numerical Harmonic Analysis, Birkhäuser, Basel, 2003, pp. 31-70

[26] Kaliszewski, S.; Omland, T.; Quigg, J. Cuntz–Li algebras from a-adic numbers, Rev. Roum. Math. Pures Appl., Volume 59 (2014) no. 3, pp. 331-370

[27] King, E.; Skopina, M. Quincunx multiresolution analysis for L2(Q22), p-Adic Numbers Ultrametric Anal. Appl., Volume 2 (2010) no. 3, pp. 222-231

[28] Kutyniok, G.; Kaniuth, E. Zeros of the Zak transform on locally compact abelian groups, Proc. Amer. Math. Soc., Volume 126 (1998) no. 12, pp. 3561-3569

[29] Larsen, N.; Li, X. The 2-adic ring C-algebra of the integers and its representations, J. Funct. Anal., Volume 262 (2012) no. 4, pp. 1392-1426

[30] Latrémolière, F.; Packer, J. Noncommutative solenoids and their projective modules, Commu. Noncommut. Harmon. Anal. Appl., Volume 603 (2013), pp. 35-53

[31] Latrémolière, F.; Packer, J. Explicit construction of equivalence bimodules between noncommutative solenoids, Contemp. Math., Amer. Math. Soc., Volume 650 (2015), pp. 111-140

[32] Latrémolière, F.; Packer, J. Noncommutative solenoids and the Gromov–Hausdorff propinquity, Proc. Amer. Math. Soc., Volume 145 (2017), pp. 2043-2057

[33] Li, D.; Jiang, H.K. Basic results of Gabor frame on local fields, Chin. Ann. Math., Volume 28 (2007) no. 2, pp. 165-176

[34] Losert, V. A characterization of the minimal strongly character invariant Segal algebra, Ann. Inst. Fourier (Grenoble), Volume 30 (1980), pp. 129-139

[35] Luef, F. Projections in noncommutative tori and Gabor frames, Proc. Amer. Math. Soc., Volume 139 (2011) no. 2, pp. 571-582

[36] Lyubarskii, Y.I. Frames in the Bargmann space of entire functions, Entire and Subharmonic Functions, Advances in Soviet Mathematics, vol. 11, American Mathematical Society (AMS), Providence, RI, 1992, pp. 167-180

[37] Manin, Y.; Panchishkin, A. Introduction to Modern Number Theory, Encyclopaedia Math. Sci., vol. 49, Springer-Verlag, Berlin, 2005

[38] Ramakrishnan, D.; Valenza, R.J. Fourier Analysis on Number Fields, Springer, New York, 1999

[39] Reiter, H. Metaplectic Groups and Segal Algebras, Lecture Notes in Mathematics, Springer, Berlin, 1989

[40] Rieffel, M.A. Projective modules over higher-dimensional noncommutative tori, Can. J. Math., Volume 40 (1988) no. 2, pp. 257-338

[41] Seip, K. Density theorems for sampling and interpolation in the Bargmann–Fock space. I, J. Reine Angew. Math., Volume 429 (1992), pp. 91-106

[42] Shah, F.A. Gabor frames on local fields of positive characteristic, Tbil. Math. J., Volume 9 (2016) no. 2, pp. 129-139

[43] Shah, F.A. Gabor-type expansions on local fields, SeMa J., Volume 75 (2018) no. 3, pp. 485-498

[44] Shelkovich, V.; Skopina, M. p-adic Haar multiresolution analysis and pseudo-differential operators, J. Fourier Anal. Appl., Volume 15 (2009) no. 3, pp. 366-393

Cité par Sources :