Complex analysis/Differential geometry
Kähler submanifolds of the symmetrized polydisc
Comptes Rendus. Mathématique, Volume 356 (2018) no. 4, pp. 387-394.

This paper proves the non-existence of common Kähler submanifolds of the complex Euclidean space and of the symmetrized polydisc endowed with their canonical metrics.

Ce texte démontre la non-existence de sous-variété kählérienne dans l'espace euclidien complexe et dans le polydisque symétrisé, munis de leur métrique canonique.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2018.03.009
Su, Guicong 1; Tang, Yanyan 1; Tu, Zhenhan 1

1 School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei 430072, PR China
@article{CRMATH_2018__356_4_387_0,
     author = {Su, Guicong and Tang, Yanyan and Tu, Zhenhan},
     title = {K\"ahler submanifolds of the symmetrized polydisc},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {387--394},
     publisher = {Elsevier},
     volume = {356},
     number = {4},
     year = {2018},
     doi = {10.1016/j.crma.2018.03.009},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2018.03.009/}
}
TY  - JOUR
AU  - Su, Guicong
AU  - Tang, Yanyan
AU  - Tu, Zhenhan
TI  - Kähler submanifolds of the symmetrized polydisc
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 387
EP  - 394
VL  - 356
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2018.03.009/
DO  - 10.1016/j.crma.2018.03.009
LA  - en
ID  - CRMATH_2018__356_4_387_0
ER  - 
%0 Journal Article
%A Su, Guicong
%A Tang, Yanyan
%A Tu, Zhenhan
%T Kähler submanifolds of the symmetrized polydisc
%J Comptes Rendus. Mathématique
%D 2018
%P 387-394
%V 356
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2018.03.009/
%R 10.1016/j.crma.2018.03.009
%G en
%F CRMATH_2018__356_4_387_0
Su, Guicong; Tang, Yanyan; Tu, Zhenhan. Kähler submanifolds of the symmetrized polydisc. Comptes Rendus. Mathématique, Volume 356 (2018) no. 4, pp. 387-394. doi : 10.1016/j.crma.2018.03.009. http://www.numdam.org/articles/10.1016/j.crma.2018.03.009/

[1] Agler, J.; Lykova, Z.A.; Young, N.J. Extremal holomorphic maps and the symmetrized bidisc, Proc. Lond. Math. Soc., Volume 106 (2013) no. 4, pp. 781-818

[2] Agler, J.; Young, N.J. The two-by-two spectral Nevanlinna–Pick problem, Trans. Amer. Math. Soc., Volume 356 (2004) no. 2, pp. 573-585

[3] Agler, J.; Young, N.J. The hyperbolic geometry of the symmetrized bidisc, J. Geom. Anal., Volume 14 (2004) no. 3, pp. 375-403

[4] Bell, S. The Bergman kernel function and proper holomorphic mappings, Trans. Amer. Math. Soc., Volume 270 (1982), pp. 685-691

[5] Calabi, E. Isometric imbedding of complex manifolds, Ann. of Math. (2), Volume 58 (1953), pp. 1-23

[6] Cheng, X.; Di Scala, A.; Yuan, Y. Kähler submanifolds and the Umehara algebra, Int. J. Math., Volume 28 (2017) no. 4

[7] Cheng, X.; Niu, Y. Submanifolds of Cartan–Hartogs domains and complex Euclidean spaces, J. Math. Anal. Appl., Volume 452 (2017), pp. 1262-1268

[8] Costara, C. The symmetrized bidisc and Lempert's theorem, Bull. Lond. Math. Soc., Volume 36 (2004), pp. 656-662

[9] Di Scala, A.; Loi, A. Kähler maps of Hermitian symmetric spaces into complex space forms, Geom. Dedic., Volume 125 (2007), pp. 103-113

[10] Di Scala, A.; Loi, A. Kähler manifolds and their relatives, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 9 (2010) no. 5, pp. 495-501

[11] Edigarian, A.; Zwonek, W. Geometry of the symmetrized polydisc, Arch. Math. (Basel), Volume 84 (2005), pp. 364-374

[12] Feng, Z.; Tu, Z.H. On canonical metrics on Cartan–Hartogs domains, Math. Z., Volume 278 (2014), pp. 301-320

[13] Frosini, C.; Vlacci, F. A Julia's lemma for the symmetrized bidisc G2, Complex Var. Elliptic Equ., Volume 57 (2012), pp. 1121-1134

[14] Huang, X.; Yuan, Y. Submanifolds of Hermitian symmetric spaces (Baklout, A.; Kacim, A.E.; Kallel, S.; Mir, N., eds.), Analysis and Geometry, Springer Proc. Math. Stat., vol. 127, Springer, 2015, pp. 197-206

[15] Jarnicki, M.; Pflug, P. Invariant Distances and Metrics in Complex Analysis, de Gruyter Exp. Math., vol. 9, De Gruyter, Berlin, 2013

[16] Lang, S. Algebra, Grad. Texts Math., vol. 211, Springer-Verlag, New York, 2002

[17] Mossa, R. A bounded homogeneous domain and a projective manifold are not relatives, Riv. Mat. Univ. Parma, Volume 4 (2013) no. 1, pp. 55-59

[18] Rudin, W. Proper holomorphic maps and finite reflection groups, Indiana Univ. Math. J., Volume 31 (1982), pp. 701-720

[19] Tu, Z.H.; Zhang, S. The Schwarz lemma at the boundary of the symmetrized bidisc, J. Math. Anal. Appl., Volume 459 (2018), pp. 182-202

[20] Trybuła, M. Invariant metrics on the symmetrized bidisc, Complex Var. Elliptic Equ., Volume 60 (2015), pp. 559-565

[21] Umehara, M. Kähler submanifolds of complex space forms, Tokyo J. Math., Volume 10 (1987), pp. 203-214

[22] Yin, W. The Bergman kernels on Cartan–Hartogs domains, Chin. Sci. Bull., Volume 44 (1999) no. 21, pp. 1947-1951

[23] Zedda, M. Strongly not relative Kähler manifolds, Complex Manifolds, Volume 4 (2017), pp. 1-6

Cited by Sources: