Algebra/Group theory
On the T-slices of a finite group
Comptes Rendus. Mathématique, Volume 356 (2018) no. 4, pp. 360-364.

A slice (G,S) of finite groups is a pair consisting of a finite group G and a subgroup S of G. In this paper, we show that some properties of finite groups extend to slices of finite groups. In particular, by analogy with B-groups, we introduce the notion of T-slice, and show that any slice of finite groups admits a largest quotient T-slice.

Une tranche (G,S) de groupes finis est un couple formé d'un groupe fini G et d'un sous-groupe S de G. Dans cet article, nous démontrons que certaines propriétés des groupes finis s'étendent aux tranches de groupes finis. En particulier, par analogie avec les B-groupes, nous introduisons la notion de T-tranche, et nous montrons que toute tranche de groupes finis admet un plus grand quotient qui soit une T-tranche.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2018.03.001
Tounkara, Ibrahima 1

1 Laboratoire d'algèbre, de cryptologie, de géométrie algébrique et applications (LACGAA), Département de mathématiques et informatique, Faculté des sciences et techniques, Université Cheikh-Anta-Diop, BP 5005, Dakar, Senegal
@article{CRMATH_2018__356_4_360_0,
     author = {Tounkara, Ibrahima},
     title = {On the {\protect\emph{T}\protect\textsuperscript{\ensuremath{\circ}}-slices} of a finite group},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {360--364},
     publisher = {Elsevier},
     volume = {356},
     number = {4},
     year = {2018},
     doi = {10.1016/j.crma.2018.03.001},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2018.03.001/}
}
TY  - JOUR
AU  - Tounkara, Ibrahima
TI  - On the T∘-slices of a finite group
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 360
EP  - 364
VL  - 356
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2018.03.001/
DO  - 10.1016/j.crma.2018.03.001
LA  - en
ID  - CRMATH_2018__356_4_360_0
ER  - 
%0 Journal Article
%A Tounkara, Ibrahima
%T On the T∘-slices of a finite group
%J Comptes Rendus. Mathématique
%D 2018
%P 360-364
%V 356
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2018.03.001/
%R 10.1016/j.crma.2018.03.001
%G en
%F CRMATH_2018__356_4_360_0
Tounkara, Ibrahima. On the T-slices of a finite group. Comptes Rendus. Mathématique, Volume 356 (2018) no. 4, pp. 360-364. doi : 10.1016/j.crma.2018.03.001. http://www.numdam.org/articles/10.1016/j.crma.2018.03.001/

[1] Baumann, M. The composition factors of the functor of permutation modules, J. Algebra, Volume 344 (2011), pp. 284-295

[2] Bouc, S. Foncteurs d'ensembles munis d'une double action, J. Algebra, Volume 183 (2008) no. 0238, pp. 5067-5087

[3] Bouc, S. The slice Burnside ring and the section Burnside ring of a finite group, Compos. Math., Volume 148 (2012) no. 1, pp. 868-906

[4] Bouc, S. A conjecture on B-groups, Math. Z., Volume 274 (2013), pp. 367-372

[5] Crapo, H.H. The Möbius function of a lattice, J. Comb. Theory, Volume 1 (1966), pp. 126-131

[6] Gluck, D. Idempotent formula for the Burnside ring with applications to the p-subgroup simplicial complex, Ill. J. Math., Volume 25 (1981), pp. 63-67

[7] Tounkara, I. The ideals of the slice Burnside p-biset functor, J. Algebra, Volume 495 (2018), pp. 81-113

[8] Yoshida, T. Idempotents in Burnside rings and Dress induction theorem, J. Algebra, Volume 80 (1983), pp. 90-105

Cited by Sources:

This work is part of my doctoral thesis under Oumar Diankha (UCAD, Dakar, Senegal) and Serge Bouc (UPJV, Amiens, France).