Algebraic geometry/Differential geometry
Singularities and semistable degenerations for symplectic topology
Comptes Rendus. Mathématique, Volume 356 (2018) no. 4, pp. 420-432.

We overview our work [7–11,6] defining and studying normal crossings varieties and subvarieties in symplectic topology. This work answers a question of Gromov on the feasibility of introducing singular (sub)varieties into symplectic topology in the case of normal crossings singularities. It also provides a necessary and sufficient condition for smoothing normal crossings symplectic varieties. In addition, we explain some connections with other areas of mathematics and discuss a few directions for further research.

Nous résumons nos travaux [7–11,6], où l'on définit et étudie les variétés et sous-variétés à croisements normaux en géométrie symplectique. Ils répondent à une question de Gromov sur la possibilité d'introduire de telles (sous-)variétés singuliéres en topologie symplectique, dans le cas de singularités à croisements normaux. Nous donnons également une condition nécessaire et suffisante pour lisser ces variétés symplectiques à croisements normaux. De plus, nous expliquons les liens avec d'autres domaines mathématiques et discutons quelques directions pour de futures recherches.

Published online:
DOI: 10.1016/j.crma.2018.02.009
Tehrani, Mohammad F. 1; McLean, Mark 2; Zinger, Aleksey 2

1 Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, NY 11794, USA
2 Department of Mathematics, Stony Brook University, Stony Brook, NY 11794, USA
     author = {Tehrani, Mohammad F. and McLean, Mark and Zinger, Aleksey},
     title = {Singularities and semistable degenerations for symplectic topology},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {420--432},
     publisher = {Elsevier},
     volume = {356},
     number = {4},
     year = {2018},
     doi = {10.1016/j.crma.2018.02.009},
     language = {en},
     url = {}
AU  - Tehrani, Mohammad F.
AU  - McLean, Mark
AU  - Zinger, Aleksey
TI  - Singularities and semistable degenerations for symplectic topology
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 420
EP  - 432
VL  - 356
IS  - 4
PB  - Elsevier
UR  -
DO  - 10.1016/j.crma.2018.02.009
LA  - en
ID  - CRMATH_2018__356_4_420_0
ER  - 
%0 Journal Article
%A Tehrani, Mohammad F.
%A McLean, Mark
%A Zinger, Aleksey
%T Singularities and semistable degenerations for symplectic topology
%J Comptes Rendus. Mathématique
%D 2018
%P 420-432
%V 356
%N 4
%I Elsevier
%R 10.1016/j.crma.2018.02.009
%G en
%F CRMATH_2018__356_4_420_0
Tehrani, Mohammad F.; McLean, Mark; Zinger, Aleksey. Singularities and semistable degenerations for symplectic topology. Comptes Rendus. Mathématique, Volume 356 (2018) no. 4, pp. 420-432. doi : 10.1016/j.crma.2018.02.009.

[1] Abramovich, D.; Chen, Q. Stable logarithmic maps to Deligne–Faltings pairs II, Asian J. Math., Volume 18 (2014) no. 3, pp. 465-488

[2] Abramovich, D.; Chen, Q.; Gross, M.; Siebert, B. Decomposition of degenerate Gromov–Witten invariants | arXiv

[3] Campana, F. On twistor spaces of the class C, J. Differ. Geom., Volume 33 (1991) no. 2, pp. 541-549

[4] Canas da Silva, A. Lectures on Symplectic Geometry, Lect. Notes Math., vol. 1764, Springer-Verlag, 2001 (revised 2006)

[5] Donaldson, S. Symplectic submanifolds and almost-complex geometry, J. Differ. Geom., Volume 44 (1996) no. 4, pp. 666-705

[6] M. Farajzadeh Tehrani, A. Zinger, On the multifold symplectic sum and cut constructions, work in progress.

[7] Farajzadeh-Tehrani, M.; McLean, M.; Zinger, A. Normal crossings singularities for symplectic topology | arXiv

[8] Farajzadeh-Tehrani, M.; McLean, M.; Zinger, A. The smoothability of normal crossings symplectic varieties | arXiv

[9] M. Farajzadeh-Tehrani, M. McLean, A. Zinger, Normal crossings singularities for symplectic topology, II, in preparation.

[10] M. Farajzadeh-Tehrani, M. McLean, A. Zinger, The smoothability of normal crossings symplectic varieties, II, in preparation.

[11] Farajzadeh-Tehrani, M.; Zinger, A. Normal crossings degenerations of symplectic manifolds | arXiv

[12] Friedman, R. Global smoothings of varieties with normal crossings, Ann. of Math. (2), Volume 118 (1983) no. 1, pp. 75-114

[13] Gompf, R. A new construction of symplectic manifolds, Ann. of Math., Volume 142 (1995) no. 3, pp. 527-595

[14] Gromov, M. Partial Differential Relations, Springer-Verlag, 1986

[15] Gross, M.; Siebert, B. Affine manifolds, log structures, and mirror symmetry, Turk. J. Math., Volume 27 (2003) no. 1, pp. 33-60

[16] Gross, M.; Siebert, B. Logarithmic Gromov–Witten invariants, J. Amer. Math. Soc., Volume 26 (2013) no. 2, pp. 451-510

[17] Ionel, E.; Parker, T. Relative Gromov–Witten invariants, Ann. of Math. (2), Volume 157 (2003) no. 1, pp. 45-96

[18] Lerman, E. Symplectic cuts, Math. Res. Lett., Volume 2 (1995) no. 3, pp. 247-258

[19] Li, J. A degeneration formula for GW-invariants, J. Differ. Geom., Volume 60 (2002) no. 1, pp. 199-293

[20] Li, A.-M.; Ruan, Y. Symplectic surgery and Gromov–Witten invariants of Calabi–Yau 3-folds, Invent. Math., Volume 145 (2001) no. 1, pp. 151-218

[21] Li, J.; Tian, G. Virtual moduli cycles and Gromov–Witten invariants of general symplectic manifolds, Topics in Symplectic 4-Manifolds, First Int. Press Lect. Ser., I, International Press, 1998, pp. 47-83

[22] McCarthy, J.; Wolfson, J. Symplectic normal connect sum, Topology, Volume 33 (1994) no. 4, pp. 729-764

[23] McDuff, D.; Salamon, D. Introduction to Symplectic Topology, Oxford University Press, 1998

[24] McDuff, D.; Salamon, D. J-Holomorphic Curves and Symplectic Topology, Colloq. Publ., vol. 52, AMS, 2012

[25] McLean, M. The growth rate of symplectic homology and affine varieties, Geom. Funct. Anal., Volume 22 (2012) no. 2, pp. 369-442

[26] McLean, M. Reeb orbits and the minimal discrepancy of an isolated singularity, Invent. Math., Volume 204 (2016) no. 2, pp. 505-594

[27] Morrison, D. Compactifications of moduli spaces inspired by mirror symmetry | arXiv

[28] Newlander, A.; Nirenberg, L. Complex analytic coordinates in almost complex manifolds, Ann. of Math. (2), Volume 65 (1957) no. 3, pp. 391-404

[29] Parker, B. Exploded fibrations, Proceedings of Gokova Geometry–Topology Conference 2006, 2007, pp. 52-90

[30] Parker, B. Gromov–Witten invariants of exploded manifolds | arXiv

[31] Parker, B. Gluing formula for Gromov–Witten invariants in a triple product | arXiv

[32] Persson, U.; Pinkham, H. Some examples of non-smoothable varieties with normal crossings, Duke Math. J., Volume 50 (1983) no. 2, pp. 477-486

[33] Sheridan, N. Homological mirror symmetry for Calabi–Yau hypersurfaces in projective space, Invent. Math., Volume 199 (2015) no. 1, pp. 1-186

[34] Symington, M. New Constructions of Symplectic Four-Manifolds, Stanford University, Stanford, CA, USA, 1996 (Ph.D. Thesis)

[35] Symington, M. A new symplectic surgery: the 3-fold sum, Topol. Appl., Volume 88 (1998) no. 1, pp. 27-53

[36] Tian, G. (Curr. Dev. Math.), International Press (1995), pp. 361-401

[37] Tseng, L.-S.; Yau, S.-T. Non-Kähler Calabi–Yau manifolds, Proc. Symp. Pure Math., Volume 85 (2011), pp. 241-254

Cited by Sources: