Partial differential equations
Well-posedness of the scalar and the vector advection–reaction problems in Banach graph spaces
Comptes Rendus. Mathématique, Volume 355 (2017) no. 8, pp. 892-902.

An extension of the well-posedness analysis of the scalar and the vector advection–reaction problem in Banach graph spaces of power p(1,) is proposed. This analysis is based on the sign of the associated Friedrichs tensor, taking positive, null or reasonably negative values.

Cette Note propose une extension de l'analyse de la bonne position des problèmes d'advection–réaction scalaire et vectorielle dans les espaces du graphe de Banach de puissance p(1,). Cette analyse étend l'hypothèse sur le signe du tenseur de Friedrichs associé à ces problèmes, permettant ainsi de considérer le cas où ce tenseur prend des valeurs positives, nulles ou raisonnablement négatives.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2017.07.009
Cantin, Pierre 1

1 Université Paris-Est, CERMICS (ENPC), 77455 Marne-la-Vallée cedex 2, France
@article{CRMATH_2017__355_8_892_0,
     author = {Cantin, Pierre},
     title = {Well-posedness of the scalar and the vector advection{\textendash}reaction problems in {Banach} graph spaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {892--902},
     publisher = {Elsevier},
     volume = {355},
     number = {8},
     year = {2017},
     doi = {10.1016/j.crma.2017.07.009},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2017.07.009/}
}
TY  - JOUR
AU  - Cantin, Pierre
TI  - Well-posedness of the scalar and the vector advection–reaction problems in Banach graph spaces
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 892
EP  - 902
VL  - 355
IS  - 8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2017.07.009/
DO  - 10.1016/j.crma.2017.07.009
LA  - en
ID  - CRMATH_2017__355_8_892_0
ER  - 
%0 Journal Article
%A Cantin, Pierre
%T Well-posedness of the scalar and the vector advection–reaction problems in Banach graph spaces
%J Comptes Rendus. Mathématique
%D 2017
%P 892-902
%V 355
%N 8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2017.07.009/
%R 10.1016/j.crma.2017.07.009
%G en
%F CRMATH_2017__355_8_892_0
Cantin, Pierre. Well-posedness of the scalar and the vector advection–reaction problems in Banach graph spaces. Comptes Rendus. Mathématique, Volume 355 (2017) no. 8, pp. 892-902. doi : 10.1016/j.crma.2017.07.009. http://www.numdam.org/articles/10.1016/j.crma.2017.07.009/

[1] Bardos, C. Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport, Ann. Sci. Éc. Norm. Supér. (4), Volume 3 (1970) no. 2, pp. 185-233

[2] Beirão da Veiga, H. Boundary-value problems for a class of first order partial differential equations in Sobolev spaces and applications to the Euler flow, Rend. Semin. Mat. Univ. Padova, Volume 79 (1988), pp. 247-273

[3] Bossavit, A. Applied Differential Geometry. Lecture Notes, 2005 http://butler.cc.tut.fi/~bossavit/BackupICM/Compendium.html (Available online on)

[4] Brézis, H. Analyse fonctionelle; théorie et applications, Masson, 1983

[5] Devinatz, A.; Ellis, R.; Friedman, A. The asymptotic behavior of the first real eigenvalue of second order elliptic operators with a small parameter in the highest derivatives. II, Indiana Univ. Math. J., Volume 23 (1973–1974), pp. 991-1011

[6] DiPerna, R.J.; Lions, P.-L. Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511-548

[7] Ern, A.; Guermond, J.-L. Theory and Practice of Finite Elements, Applied Mathematical Sciences, vol. 159, Springer-Verlag, New York, 2004

[8] Ern, A.; Guermond, J.-L. Discontinuous Galerkin methods for Friedrichs' systems. I. General theory, SIAM J. Numer. Anal., Volume 44 (2006) no. 2, pp. 753-778

[9] Ern, A.; Guermond, J.-L.; Caplain, G. An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems, Commun. Partial Differ. Equ., Volume 32 (2007) no. 1–3, pp. 317-341

[10] Girault, V.; Tartar, L. Lp and W1,p regularity of the solution of a steady transport equation, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010) no. 15–16, pp. 885-890

[11] Heumann, H. Eulerian and Semi-Lagrangian Methods for Advection–Diffusion of Differential Forms, ETH Zürich, Switzerland, 2011 (PhD thesis)

[12] Jensen, M. Discontinuous Galerkin Methods for Friedrichs Systems with Irregular Solutions, University of Oxford, UK, 2004 (PhD thesis)

Cited by Sources: