Partial differential equations
Boundedness of classical solutions for a chemotaxis model with consumption of chemoattractant
[Les solutions classiques d'un modèle de chimiotaxie avec consommation de chimioattracteurs sont bornées]
Comptes Rendus. Mathématique, Tome 355 (2017) no. 6, pp. 633-639.

Dans cette Note, nous étudions le système de chimiotaxie suivant :

{ut=(ξuχuv),xΩ,t>0,vt=Δvuv,xΩ,t>0,
sous des conditions de Neumann homogènes au bord, supposé lisse, d'un domaine borné ΩRn, n1. Ici, ξ et χ sont des constantes positives.

Nous montrons que les solutions classiques du système ci-dessus sont uniformément bornées en temps, pourvu que :

v0L(Ω)<{1χξ2(n+1)[π+2arctan((1ξ)22(n+1)ξ)],si0<ξ<1,πχ2(n+1),siξ=1,1χξ2(n+1)[π2arctan((ξ1)22(n+1)ξ)],siξ>1.
Dans le cas ξ=1, des résultats récents montrent que les solutions classiques sont globales et bornées dès que 0<v0L(Ω)16(n+1)χ. Comme 16(n+1)χ<πχ2(n+1) ou, plus précisément, limnπχ2(n+1)16(n+1)χ=+, ces résultats se déduisent des nôtres.

In this paper, we study the chemotaxis system:

{ut=(ξuχuv),xΩ,t>0,vt=Δvuv,xΩ,t>0,
under homogeneous Neumann boundary conditions in a bounded domain ΩRn,n1, with smooth boundary. Here, ξ and χ are some positive constants.

We prove that the classical solutions to the above system are uniformly in-time-bounded provided that:

v0L(Ω)<{1χξ2(n+1)[π+2arctan((1ξ)22(n+1)ξ)],if0<ξ<1,πχ2(n+1),ifξ=1,1χξ2(n+1)[π2arctan((ξ1)22(n+1)ξ)],ifξ>1.
In the case of ξ=1, the recent results show that the classical solutions are global and bounded provided that 0<v0L(Ω)16(n+1)χ. Because of 16(n+1)χ<πχ2(n+1), or more precisely, limnπχ2(n+1)16(n+1)χ=+, our results extend the recent results.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.04.009
Baghaei, Khadijeh 1 ; Khelghati, Ali 2

1 School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran
2 Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
@article{CRMATH_2017__355_6_633_0,
     author = {Baghaei, Khadijeh and Khelghati, Ali},
     title = {Boundedness of classical solutions for a chemotaxis model with consumption of chemoattractant},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {633--639},
     publisher = {Elsevier},
     volume = {355},
     number = {6},
     year = {2017},
     doi = {10.1016/j.crma.2017.04.009},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2017.04.009/}
}
TY  - JOUR
AU  - Baghaei, Khadijeh
AU  - Khelghati, Ali
TI  - Boundedness of classical solutions for a chemotaxis model with consumption of chemoattractant
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 633
EP  - 639
VL  - 355
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2017.04.009/
DO  - 10.1016/j.crma.2017.04.009
LA  - en
ID  - CRMATH_2017__355_6_633_0
ER  - 
%0 Journal Article
%A Baghaei, Khadijeh
%A Khelghati, Ali
%T Boundedness of classical solutions for a chemotaxis model with consumption of chemoattractant
%J Comptes Rendus. Mathématique
%D 2017
%P 633-639
%V 355
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2017.04.009/
%R 10.1016/j.crma.2017.04.009
%G en
%F CRMATH_2017__355_6_633_0
Baghaei, Khadijeh; Khelghati, Ali. Boundedness of classical solutions for a chemotaxis model with consumption of chemoattractant. Comptes Rendus. Mathématique, Tome 355 (2017) no. 6, pp. 633-639. doi : 10.1016/j.crma.2017.04.009. http://www.numdam.org/articles/10.1016/j.crma.2017.04.009/

[1] Baghaei, K.; Khelghati, A. Global existence and boundedness of classical solutions for a chemotaxismodel with consumption of chemoattractant and logistic source, Math. Methods Appl. Sci. (2016) | DOI

[2] Horstmann, D.; Wang, G. Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math., Volume 12 (2001), pp. 159-177

[3] Keller, E.F.; Segel, L.A. Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., Volume 26 (1970), pp. 399-415

[4] Lankeit, J.; Wang, Y. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption, 2016 (pp. 1–20) | arXiv

[5] Li, T.; Suen, A.; Winkler, M.; Xue, C. Global small-data solutions of a two-dimensional chemotaxis system with rotational flux terms, Math. Models Methods Appl. Sci., Volume 25 (2015) no. 4, pp. 721-746

[6] Nagai, T.; Seneba, T.; Yoshida, K. Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Volume 40 (1997), pp. 411-433

[7] Osaki, K.; Yagi, A. Finite dimensional attractors for one-dimensional Keller–Segel equations, Funkc. Ekvacioj, Volume 44 (2001), pp. 349-367

[8] Tao, Y. Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., Volume 381 (2011), pp. 521-529

[9] Tao, Y.; Winkler, M. Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differ. Equ., Volume 252 (2012), pp. 2520-2543

[10] Winkler, M. Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Differ. Equ., Volume 248 (2010), pp. 2889-2905

[11] Winkler, M. Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Math. Pures Appl., Volume 100 (2013), pp. 748-767

[12] Zhang, Q. Boundedness in chemotaxis systems with rotational flux terms, Math. Nachr. (2016), pp. 1-12 | DOI

[13] Zhang, Q.; Li, Y. Stabilization and convergence rate in a chemotaxis system with consumption of chemoattractant, J. Math. Phys., Volume 56 (2015) no. 8

[14] Zheng, P.; Mu, C. Global existence of solutions for a fully parabolic chemotaxis system with consumption of chemoattractant and logistic source, Math. Nachr., Volume 288 (2015), pp. 710-720

Cité par Sources :