Partial differential equations/Calculus of variations
Interaction energy between vortices of vector fields on Riemannian surfaces
[Énergie d'interaction entre les tourbillons des champs de vecteurs sur une surface riemannienne]
Comptes Rendus. Mathématique, Tome 355 (2017) no. 5, pp. 515-521.

Nous étudions un modèle variationnel de type Ginzburg–Landau (dépendant d'un petit paramètre ε>0) pour des champs de vecteurs (tangents) sur une surface riemannienne. Lorsque ε0, ces champs de vecteurs auront des points singuliers d'indice non nul, appelés tourbillons. Notre résultat détermine l'énergie d'interaction entre les tourbillons en tant que Γ-limite (au second ordre) pour ε0.

We study a variational Ginzburg–Landau-type model depending on a small parameter ε>0 for (tangent) vector fields on a 2-dimensional Riemannian surface. As ε0, the vector fields tend to be of unit length and will have singular points of a (non-zero) index, called vortices. Our main result determines the interaction energy between these vortices as a Γ-limit (at the second order) as ε0.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.04.004
Ignat, Radu 1 ; Jerrard, Robert L. 2

1 Institut de Mathématiques de Toulouse, Université Paul-Sabatier, 31062 Toulouse, France
2 Department of Mathematics, University of Toronto, Toronto, Ontario, Canada
@article{CRMATH_2017__355_5_515_0,
     author = {Ignat, Radu and Jerrard, Robert L.},
     title = {Interaction energy between vortices of vector fields on {Riemannian} surfaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {515--521},
     publisher = {Elsevier},
     volume = {355},
     number = {5},
     year = {2017},
     doi = {10.1016/j.crma.2017.04.004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2017.04.004/}
}
TY  - JOUR
AU  - Ignat, Radu
AU  - Jerrard, Robert L.
TI  - Interaction energy between vortices of vector fields on Riemannian surfaces
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 515
EP  - 521
VL  - 355
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2017.04.004/
DO  - 10.1016/j.crma.2017.04.004
LA  - en
ID  - CRMATH_2017__355_5_515_0
ER  - 
%0 Journal Article
%A Ignat, Radu
%A Jerrard, Robert L.
%T Interaction energy between vortices of vector fields on Riemannian surfaces
%J Comptes Rendus. Mathématique
%D 2017
%P 515-521
%V 355
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2017.04.004/
%R 10.1016/j.crma.2017.04.004
%G en
%F CRMATH_2017__355_5_515_0
Ignat, Radu; Jerrard, Robert L. Interaction energy between vortices of vector fields on Riemannian surfaces. Comptes Rendus. Mathématique, Tome 355 (2017) no. 5, pp. 515-521. doi : 10.1016/j.crma.2017.04.004. http://www.numdam.org/articles/10.1016/j.crma.2017.04.004/

[1] Alicandro, R.; Ponsiglione, M. Ginzburg–Landau functionals and renormalized energy: a revised Γ-convergence approach, J. Funct. Anal., Volume 266 (2014), pp. 4890-4907

[2] Aubin, T. Some Nonlinear Problems in Riemannian Geometry, Springer-Verlag, Berlin, 1998

[3] Bethuel, F.; Brezis, H.; Hélein, F. Ginzburg–Landau Vortices, Birkhäuser, Boston, MA, USA, 1994

[4] Canevari, G.; Segatti, A. Defects in Nematic Shells: a Γ-convergence discrete-to-continuum approach | arXiv

[5] Carbou, G. Thin layers in micromagnetism, Math. Models Methods Appl. Sci., Volume 11 (2001), pp. 1529-1546

[6] Colliander, J.E.; Jerrard, R.L. Ginzburg–Landau vortices: weak stability and Schrödinger equation dynamics, J. Anal. Math., Volume 77 (1999), pp. 129-205

[7] do Carmo, M.P. Differential Forms and Applications, Springer-Verlag, Berlin, 1994

[8] Federer, H.; Fleming, W.H. Normal and integral currents, Ann. of Math. (2), Volume 72 (1960), pp. 458-520

[9] R. Ignat, R.L. Jerrard, Renormalized energy between vortices in some Ginzburg–Landau models on Riemannian surfaces, in preparation.

[10] Jerrard, R.L. Lower bounds for generalized Ginzburg–Landau functionals, SIAM J. Math. Anal., Volume 30 (1999), pp. 721-746

[11] Jerrard, R.L.; Soner, H.M. The Jacobian and the Ginzburg–Landau energy, Calc. Var. Partial Differ. Equ., Volume 14 (2002), pp. 151-191

[12] Sandier, E. Lower bounds for the energy of unit vector fields and applications, J. Funct. Anal., Volume 152 (1998), pp. 379-403

[13] Sandier, E.; Serfaty, S. Vortices in the Magnetic Ginzburg–Landau Model, Birkhäuser, 2007

[14] Steiner, J. A geometrical mass and its extremal properties for metrics on S2, Duke Math. J., Volume 129 (2005), pp. 63-86

Cité par Sources :