Ordinary differential equations
Topological properties of solution sets for partial functional evolution inclusions
[Propriétés topologiques des ensembles de solutions d'inclusions fonctionnelles partielles d'évolution]
Comptes Rendus. Mathématique, Tome 355 (2017) no. 1, pp. 45-64.

Cette Note traite des inclusions fonctionnelles d'évolution de type neutre dans les espaces de Banach, aussi bien lorsque le semi-groupe est compact que lorsqu'il est non compact. Nous étudions les propriétés topologiques de l'ensemble des solutions. Nous montrons que cet ensemble est non vide, compact, et qu'il est un Rδ-ensemble. Ceci signifie qu'il peut ne pas être réduit à un point, mais qu'il est équivalent, pour la topologie algébrique, à un espace réduit à un point. Plus précisément, l'ensemble des solutions a les mêmes groupes d'homologie qu'un ensemble réduit à un point. Comme exemple d'application, nous considérons enfin une inclusion différentielle partielle.

This paper deals with functional evolution inclusions of neutral type in Banach space when the semigroup is compact as well as noncompact. The topological properties of the solution set is investigated. It is shown that the solution set is nonempty, compact and an Rδ-set which means that the solution set may not be a singleton but, from the point of view of algebraic topology, it is equivalent to a point, in the sense that it has the same homology group as one-point space. As a sample of application, we consider a partial differential inclusion at end of the paper.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.11.011
Zhou, Yong 1, 2 ; Peng, Li 1

1 Faculty of Mathematics and Computational Science, Xiangtan University, Hunan 411105, PR China
2 Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
@article{CRMATH_2017__355_1_45_0,
     author = {Zhou, Yong and Peng, Li},
     title = {Topological properties of solution sets for partial functional evolution inclusions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {45--64},
     publisher = {Elsevier},
     volume = {355},
     number = {1},
     year = {2017},
     doi = {10.1016/j.crma.2016.11.011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2016.11.011/}
}
TY  - JOUR
AU  - Zhou, Yong
AU  - Peng, Li
TI  - Topological properties of solution sets for partial functional evolution inclusions
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 45
EP  - 64
VL  - 355
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2016.11.011/
DO  - 10.1016/j.crma.2016.11.011
LA  - en
ID  - CRMATH_2017__355_1_45_0
ER  - 
%0 Journal Article
%A Zhou, Yong
%A Peng, Li
%T Topological properties of solution sets for partial functional evolution inclusions
%J Comptes Rendus. Mathématique
%D 2017
%P 45-64
%V 355
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2016.11.011/
%R 10.1016/j.crma.2016.11.011
%G en
%F CRMATH_2017__355_1_45_0
Zhou, Yong; Peng, Li. Topological properties of solution sets for partial functional evolution inclusions. Comptes Rendus. Mathématique, Tome 355 (2017) no. 1, pp. 45-64. doi : 10.1016/j.crma.2016.11.011. http://www.numdam.org/articles/10.1016/j.crma.2016.11.011/

[1] Andres, J.; Gabor, G.; Górniewicz, L. Topological structure of solution sets to multi-valued asymptotic problems, Z. Anal. Anwend., Volume 19 (2000), pp. 35-60

[2] Andres, J.; Pavlačková, M. Topological structure of solution sets to asymptotic boundary value problems, J. Differ. Equ., Volume 248 (2010), pp. 127-150

[3] Aronszajn, N. Le correspondant topologique de l'unicité dans la théorie des équations différentielles, Ann. Math. (2), Volume 43 (1942) no. 4, pp. 730-738

[4] Bakowska, A.; Gabor, G. Topological structure of solution sets to differential problems in Fréchet spaces, Ann. Pol. Math., Volume 95 (2009), pp. 17-36

[5] Benchohra, M.; Abbas, S. Advanced Functional Evolution Equations and Inclusions, Springer, 2015

[6] Bothe, D. Multi-valued perturbations of m-accretive differential inclusions, Isr. J. Math., Volume 108 (1998), pp. 109-138

[7] Bressan, A.; Wang, Z.P. Classical solutions to differential inclusions with totally disconnected right-hand side, J. Differ. Equ., Volume 246 (2009), pp. 629-640

[8] Chen, D.H.; Wang, R.N.; Zhou, Y. Nonlinear evolution inclusions: topological characterizations of solution sets and applications, J. Funct. Anal., Volume 265 (2013), pp. 2039-2073

[9] Deimling, K. Multivalued Differential Equations, de Gruyter, Berlin, 1992

[10] Diestel, J.; Ruess, W.M.; Schachermayer, W. Weak compactness in L1(μ;X), Proc. Amer. Math. Soc., Volume 118 (1993), pp. 447-453

[11] Donchev, T.; Farkhi, E.; Mordukhovich, B.S. Discrete approximations, relaxation, and optimization of one-sided Lipschitzian differential inclusions in Hilbert spaces, J. Differ. Equ., Volume 243 (2007), pp. 301-328

[12] Gabor, G.; Grudzka, A. Structure of the solution set to impulsive functional differential inclusions on the half-line, Nonlinear Differ. Equ. Appl., Volume 19 (2012), pp. 609-627

[13] Gabor, G.; Grudzka, A. Erratum to: structure of the solution set to impulsive functional differential inclusions on the half-line, Nonlinear Differ. Equ. Appl., Volume 22 (2015), pp. 175-183

[14] Gabor, G.; Quincampoix, M. On existence of solutions to differential equations or inclusions remaining in a prescribed closed subset of a finite-dimensional space, J. Differ. Equ., Volume 185 (2002), pp. 483-512

[15] Hu, S.C.; Papageorgiou, N.S. On the topological regularity of the solution set of differential inclusions with constraints, J. Differ. Equ., Volume 107 (1994), pp. 280-289

[16] Kamenskii, M.; Obukhovskii, V.; Zecca, P. Condensing Multi-valued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin, New York, 2001

[17] Ntouyas, S.K.; O'Regan, D. Existence results for semilinear neutral functional differential inclusions via analytic semigroups, Acta Appl. Math., Volume 98 (2007), pp. 223-253

[18] Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983

[19] Staicu, V. On the solution sets to nonconvex differential inclusions of evolution type, Discrete Contin. Dyn. Syst., Volume 2 (1998), pp. 244-252

[20] Staicu, V. On the solution sets to differential inclusions on unbounded interval, Proc. Edinb. Math. Soc., Volume 43 (2000), pp. 475-484

[21] Vrabie, I.I. Compactness Methods for Nonlinear Evolutions, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 75, Longman and John Wiley & Sons, 1995

[22] Wang, R.N.; Ma, Q.H.; Zhou, Y. Topological theory of non-autonomous parabolic evolution inclusions on a noncompact interval and applications, Math. Ann., Volume 362 (2014), pp. 173-203

[23] Wu, J.H. Theory and Applications of Partial Functional Differential Equations, vol. 119, Springer Science & Business Media, 2012

Cité par Sources :