Algebraic geometry
Ulrich bundles on blowing ups
Comptes Rendus. Mathématique, Volume 354 (2016) no. 12, pp. 1215-1218.

We construct an Ulrich bundle on the blowup at a point where the original variety is embedded by a sufficiently positive linear system and carries an Ulrich bundle. In particular, we describe the relation between special Ulrich bundles on blown-up surfaces and the original surface.

Nous construisons un fibré de Ulrich sur l'éclatée d'une variété dans un point, dans le cas où la variété d'origine est plongée dans un système linéaire suffisamment positif et admet un fibré de Ulrich. En particulier, nous décrivons la relation entre l'existence des fibrés spéciaux de Ulrich sur une surface éclatée et sur la surface d'origine.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.10.022
Kim, Yeongrak 1, 2

1 Simion Stoilow Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania
2 Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany
@article{CRMATH_2016__354_12_1215_0,
     author = {Kim, Yeongrak},
     title = {Ulrich bundles on blowing ups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1215--1218},
     publisher = {Elsevier},
     volume = {354},
     number = {12},
     year = {2016},
     doi = {10.1016/j.crma.2016.10.022},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2016.10.022/}
}
TY  - JOUR
AU  - Kim, Yeongrak
TI  - Ulrich bundles on blowing ups
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 1215
EP  - 1218
VL  - 354
IS  - 12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2016.10.022/
DO  - 10.1016/j.crma.2016.10.022
LA  - en
ID  - CRMATH_2016__354_12_1215_0
ER  - 
%0 Journal Article
%A Kim, Yeongrak
%T Ulrich bundles on blowing ups
%J Comptes Rendus. Mathématique
%D 2016
%P 1215-1218
%V 354
%N 12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2016.10.022/
%R 10.1016/j.crma.2016.10.022
%G en
%F CRMATH_2016__354_12_1215_0
Kim, Yeongrak. Ulrich bundles on blowing ups. Comptes Rendus. Mathématique, Volume 354 (2016) no. 12, pp. 1215-1218. doi : 10.1016/j.crma.2016.10.022. http://www.numdam.org/articles/10.1016/j.crma.2016.10.022/

[1] Aprodu, M.; Farkas, G.; Ortega, A. Minimal resolutions, Chow forms and Ulrich bundles on K3 surfaces, J. Reine Angew. Math. (2016) (in press, preprint) | arXiv | DOI

[2] Beauville, A. Determinantal hypersurfaces, Mich. Math. J., Volume 48 (2000), pp. 39-64

[3] Beauville, A. Ulrich bundles on Abelian surfaces, Proc. Amer. Math. Soc., Volume 144 (2016), pp. 4609-4611

[4] Beauville, A. Ulrich bundles on surfaces with q=pg=0 (preprint) | arXiv

[5] Borisov, L.; Nuer, H. Ulrich bundles on Enriques surfaces (preprint) | arXiv

[6] Casanellas, M.; Hartshorne, R. Stable Ulrich bundles, Int. J. Math., Volume 23 (2012), p. 1250083 (with an appendix by F. Geiss and F.-O. Schreyer)

[7] Coppens, M. Embeddings of general blowing-ups at points, J. Reine Angew. Math., Volume 469 (1995), pp. 179-198

[8] Coppens, M. Very ample linear systems on blowings-up at general points of smooth projective varieties, Pac. J. Math., Volume 202 (2002), pp. 313-327

[9] Costa, L.; Miró-Roig, R.M. GL(V)-invariant Ulrich bundles on Grassmannians, Math. Ann., Volume 361 (2015), pp. 443-457

[10] Eisenbud, D.; Schreyer, F.-O. Resultants and Chow forms via exterior syzygies, Mem. Amer. Math. Soc., Volume 16 (2003), pp. 537-579 (with an Appendix by J. Weyman)

[11] Eisenbud, D.; Schreyer, F.-O. Boij–Söderberg theory, Abel Symposium 2009, Springer Verlag (2011), pp. 35-48

[12] Herzog, J.; Ulrich, B.; Backelin, J. Linear maximal Cohen–Macaulay modules over strict complete intersections, J. Pure Appl. Algebra, Volume 71 (1991), pp. 187-202

[13] Huybrechts, D.; Lehn, M. The Geometry of Moduli Space of Sheaves, Asp. Math., E, vol. 31, Vieweg, 1997

[14] Kim, Y. Ulrich bundles on rational surfaces with an anticanonical pencil, Manuscr. Math., Volume 150 (2016), pp. 99-110

[15] Miró-Roig, R.M.; Pons-Llopis, J. n-Dimensional Fano varieties of wild representation type, J. Pure Appl. Algebra, Volume 218 (2014), pp. 1867-1884

[16] Ulrich, B. Gorenstein rings and modules with high numbers of generators, Math. Z., Volume 188 (1984), pp. 23-32

Cited by Sources: