Partial differential equations/Functional analysis
Bourgain–Brézis–Mironescu formula for magnetic operators
[Formule de Brézis–Bourgain–Mironescu pour des opérateurs magnétiques]
Comptes Rendus. Mathématique, Tome 354 (2016) no. 8, pp. 825-831.

On démontre une formule du type Bourgain–Brézis–Mironescu pour une classe d'espaces magnétiques non locaux, qui jette un pont entre un opérateur magnétique fractionnaire récemment introduit et la théorie classique.

We prove a Bourgain–Brézis–Mironescu-type formula for a class of nonlocal magnetic spaces, which builds a bridge between a fractional magnetic operator recently introduced and the classical theory.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.04.013
Squassina, Marco 1 ; Volzone, Bruno 2

1 Dipartimento di Informatica, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy
2 Dipartimento di Ingegneria, Università di Napoli Parthenope, Centro Direzionale Isola C/4, 80143 Napoli, Italy
@article{CRMATH_2016__354_8_825_0,
     author = {Squassina, Marco and Volzone, Bruno},
     title = {Bourgain{\textendash}Br\'ezis{\textendash}Mironescu formula for magnetic operators},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {825--831},
     publisher = {Elsevier},
     volume = {354},
     number = {8},
     year = {2016},
     doi = {10.1016/j.crma.2016.04.013},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2016.04.013/}
}
TY  - JOUR
AU  - Squassina, Marco
AU  - Volzone, Bruno
TI  - Bourgain–Brézis–Mironescu formula for magnetic operators
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 825
EP  - 831
VL  - 354
IS  - 8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2016.04.013/
DO  - 10.1016/j.crma.2016.04.013
LA  - en
ID  - CRMATH_2016__354_8_825_0
ER  - 
%0 Journal Article
%A Squassina, Marco
%A Volzone, Bruno
%T Bourgain–Brézis–Mironescu formula for magnetic operators
%J Comptes Rendus. Mathématique
%D 2016
%P 825-831
%V 354
%N 8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2016.04.013/
%R 10.1016/j.crma.2016.04.013
%G en
%F CRMATH_2016__354_8_825_0
Squassina, Marco; Volzone, Bruno. Bourgain–Brézis–Mironescu formula for magnetic operators. Comptes Rendus. Mathématique, Tome 354 (2016) no. 8, pp. 825-831. doi : 10.1016/j.crma.2016.04.013. http://www.numdam.org/articles/10.1016/j.crma.2016.04.013/

[1] Arioli, G.; Szulkin, A. A semilinear Schrödinger equation in the presence of a magnetic field, Arch. Ration. Mech. Anal., Volume 170 (2003), pp. 277-295

[2] Avron, J.; Herbst, I.; Simon, B. Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J., Volume 45 (1978), pp. 847-883

[3] Bourgain, J.; Brezis, H.; Mironescu, P. Another look at Sobolev spaces (Menaldi, J.L.; Rofman, E.; Sulem, A., eds.), Optimal Control and Partial Differential Equations. A Volume in Honor of Professor Alain Bensoussan's 60th Birthday, IOS Press, Amsterdam, 2001, pp. 439-455

[4] Bourgain, J.; Brezis, H.; Mironescu, P. Limiting embedding theorems for Ws,p when s1 and applications, J. Anal. Math., Volume 87 (2002), pp. 77-101

[5] Brasco, L.; Parini, E.; Squassina, M. Stability of variational eigenvalues for the fractional p-Laplacian, Discrete Contin. Dyn. Syst., Ser. A, Volume 36 (2016), pp. 1813-1845

[6] d'Avenia, P.; Squassina, M. Ground states for fractional magnetic operators | arXiv

[7] Evans, L.C. Partial Differential Equations, Graduate Series in Mathematics, American Mathematical Society, 2010

[8] Frank, R.L.; Lieb, E.H.; Seiringer, R. Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc., Volume 21 (2008), pp. 925-950

[9] Ichinose, T. Magnetic relativistic Schrödinger operators and imaginary-time path integrals, Mathematical Physics, Spectral Theory and Stochastic Analysis, Operator Theory: Advances and Applications, vol. 232, Birkhäuser/Springer, Basel, Switzerland, 2013, pp. 247-297

[10] Maz'ya, V.; Shaposhnikova, T. On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., Volume 195 (2002), pp. 230-238

[11] Reed, M.; Simon, B. Methods of Modern Mathematical Physics, I, Functional Analysis, Academic Press, Inc., New York, 1980

Cité par Sources :