Partial differential equations/Calculus of variations
A maximum principle for the system Δu − ∇W(u)=0
[Un principe du maximum pour le système Δu − ∇W(u)=0]
Comptes Rendus. Mathématique, Tome 354 (2016) no. 6, pp. 595-600.

Nous établissons un principe du maximum pour les solutions minimales du système ΔuW(u)=0, dont le potentiel W s'annule à la frontière d'un ensemble fermé convexe C0Rm, de classe C2 ou réduit à un point {a}.

A maximum principle is established for minimal solutions to the system ΔuW(u)=0, with a potential W vanishing at the boundary of a closed convex set C0Rm, which is either C2 smooth or coincides with a point {a}.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.03.015
Antonopoulos, Panagiotis 1 ; Smyrnelis, Panayotis 2

1 Department of Mathematics, University of Athens, Panepistemiopolis, 15784 Athens, Greece
2 Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile
@article{CRMATH_2016__354_6_595_0,
     author = {Antonopoulos, Panagiotis and Smyrnelis, Panayotis},
     title = {A maximum principle for the system {\ensuremath{\Delta}\protect\emph{u}\,\ensuremath{-}\,\ensuremath{\nabla}\protect\emph{W}(\protect\emph{u})=0}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {595--600},
     publisher = {Elsevier},
     volume = {354},
     number = {6},
     year = {2016},
     doi = {10.1016/j.crma.2016.03.015},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2016.03.015/}
}
TY  - JOUR
AU  - Antonopoulos, Panagiotis
AU  - Smyrnelis, Panayotis
TI  - A maximum principle for the system Δu − ∇W(u)=0
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 595
EP  - 600
VL  - 354
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2016.03.015/
DO  - 10.1016/j.crma.2016.03.015
LA  - en
ID  - CRMATH_2016__354_6_595_0
ER  - 
%0 Journal Article
%A Antonopoulos, Panagiotis
%A Smyrnelis, Panayotis
%T A maximum principle for the system Δu − ∇W(u)=0
%J Comptes Rendus. Mathématique
%D 2016
%P 595-600
%V 354
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2016.03.015/
%R 10.1016/j.crma.2016.03.015
%G en
%F CRMATH_2016__354_6_595_0
Antonopoulos, Panagiotis; Smyrnelis, Panayotis. A maximum principle for the system Δu − ∇W(u)=0. Comptes Rendus. Mathématique, Tome 354 (2016) no. 6, pp. 595-600. doi : 10.1016/j.crma.2016.03.015. http://www.numdam.org/articles/10.1016/j.crma.2016.03.015/

[1] Alikakos, N.D.; Fusco, G. A maximum principle for systems with variational structure and an application to standing waves, J. Eur. Math. Soc., Volume 17 (2015) no. 7, pp. 1547-1567

[2] Baldo, S. Minimal interface criterion for phase transitions in mixtures of Cahn–Hilliard fluids, Ann. Inst. Henri Poincaré, Volume 7 (1990) no. 2, pp. 67-90

[3] Ball, J.M.; Crooks, E.C.M. Local minimizers and planar interfaces in a phase-transition model with interfacial energy, Calc. Var. Partial Differ. Equ., Volume 40 (2011) no. 3–4, pp. 501-538

[4] Brézis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer-Verlag, New York, 2011

[5] Casten, R.G.; Holland, C.J. Instability results for reaction-diffusion equations with Neumann boundary conditions, J. Differ. Equ., Volume 27 (1978), pp. 266-273

[6] Evans, L.C. A strong maximum principle for parabolic systems in a convex set with arbitrary boundary, Proc. Amer. Math. Soc., Volume 138 (2010) no. 9, pp. 3179-3185

[7] Evans, L.C. Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, 2010

[8] Evans, L.C.; Gariepy, R.F. Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, USA, 1992

[9] Kohn, R.V.; Sternberg, P. Local minimisers and singular perturbations, Proc. R. Soc. Edinb., Sect. A, Volume 111 (1989) no. 1–2, pp. 69-84

[10] Matano, H. Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., Volume 15 (1979) no. 2, pp. 401-454

[11] Modica, L.; Mortola, S. Un esempio di Γ-convergenza, Boll. Unione Mat. Ital., B, Volume 14 (1977) no. 1, pp. 285-299

[12] Weinberger, H. Invariant sets for weakly coupled parabolic and elliptic systems, Rend. Mat. Ser. VI, Volume 8 (1975), pp. 295-310

[13] Weinberger, H. Some remarks on invariant sets for systems (Schaefer, P.W., ed.), Maximum Principles and Eigenvalue Problems in Partial Differential Equations, Pitman Research Notes in Mathematics, vol. 175, Longman, 1988, pp. 189-207

Cité par Sources :