Partial differential equations
Symmetry results for solutions of equations involving zero-order operators
[Symétries des solutions d'équations impliquant des opérateurs d'ordre zéro]
Comptes Rendus. Mathématique, Tome 354 (2016) no. 3, pp. 277-281.

Soit Iϵ[u](x)=RNu(y)u(x)ϵN+2σ+|yx|N+2σdy, avec ϵ>0 et σ(0,1), un opérateur non local d'ordre zéro qui approche le laplacien fractionnaire lorsque ϵ tend vers 0. Nous étudions dans cette Note les symétries des solutions de l'équation (E) : Iϵ[u]=f(u) dans la boule unité ouverte B1 avec la condition u=0 sur le complémentaire de la boule unité fermée. Nous observons que les propriétés de symétrie dépendent de la constante de Lipschitz de f. Lorsque cette constante de Lipschitz est majorée par CN,σϵ2σ, toute solution uC(B¯1) de (E) satisfaisant u>c dans B1 et u=c sur le bord B1 est radialement symétrique.

In this note, we study symmetry results of solutions to equation (E) Iϵ[u]=f(u) in B1 with the condition u=0 in B¯1c, where Iϵ[u](x)=RNu(y)u(x)ϵN+2σ+|yx|N+2σdy, with ϵ>0 and σ(0,1), is a zero-order nonlocal operator, which approaches the fractional Laplacian when ϵ0. The function f is locally Lipschitz continuous. We analyzed that the symmetry properties of solutions depend on the Lipschitz constant of f. When the Lipschitz constant is controlled by CN,σϵ2σ, any solution uC(B¯1) of (E) satisfying u>c in B1 and u=c on B1 is radially symmetric.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.12.013
dos Prazeres, Disson 1 ; Wang, Ying 2

1 Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático, UMR2071, CNRS-UChile, Universidad de Chile, Chile
2 Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, PR China
@article{CRMATH_2016__354_3_277_0,
     author = {dos Prazeres, Disson and Wang, Ying},
     title = {Symmetry results for solutions of equations involving zero-order operators},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {277--281},
     publisher = {Elsevier},
     volume = {354},
     number = {3},
     year = {2016},
     doi = {10.1016/j.crma.2015.12.013},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2015.12.013/}
}
TY  - JOUR
AU  - dos Prazeres, Disson
AU  - Wang, Ying
TI  - Symmetry results for solutions of equations involving zero-order operators
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 277
EP  - 281
VL  - 354
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2015.12.013/
DO  - 10.1016/j.crma.2015.12.013
LA  - en
ID  - CRMATH_2016__354_3_277_0
ER  - 
%0 Journal Article
%A dos Prazeres, Disson
%A Wang, Ying
%T Symmetry results for solutions of equations involving zero-order operators
%J Comptes Rendus. Mathématique
%D 2016
%P 277-281
%V 354
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2015.12.013/
%R 10.1016/j.crma.2015.12.013
%G en
%F CRMATH_2016__354_3_277_0
dos Prazeres, Disson; Wang, Ying. Symmetry results for solutions of equations involving zero-order operators. Comptes Rendus. Mathématique, Tome 354 (2016) no. 3, pp. 277-281. doi : 10.1016/j.crma.2015.12.013. http://www.numdam.org/articles/10.1016/j.crma.2015.12.013/

[1] Alexandrov, A.D. A characteristic property of spheres, Ann. Mat. Pura Appl., Volume 58 (1962) no. 1, pp. 303-315

[2] Berestycki, H.; Nirenberg, L. On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat., Volume 22 (1991) no. 1

[3] Felmer, P.; Wang, Y. Radial symmetry of positive solutions to equations involving the fractional Laplacian, Commun. Contemp. Math., Volume 16 (2014) no. 1

[4] Felmer, P.; Topp, E. Uniform equicontinuity for a family of zero order operators approaching the fractional Laplacian, Commun. Partial Differ. Equ., Volume 40 (2015), pp. 1591-1618

[5] Gidas, B.; Ni, W.M.; Nirenberg, L. Symmetry and related properties via the maximum principle, Commun. Math. Phys., Volume 68 (1979), pp. 209-243

[6] Guillen, N.; Schwab, R.W. Aleksandrov–Bakelman–Pucci type estimates for integro-differential equations, Arch. Ration. Mech. Anal., Volume 206 (2012), pp. 111-157

[7] Serrin, J. A symmetry problem in potential theory, Arch. Ration. Mech. Anal., Volume 43 (1971), pp. 304-318

Cité par Sources :