Partial differential equations/Numerical analysis
Asymptotic Preserving numerical schemes for multiscale parabolic problems
[Schémas numériques Asymptotic Preserving pour les problèmes paraboliques multi-échelles]
Comptes Rendus. Mathématique, Tome 354 (2016) no. 3, pp. 271-276.

On considère une classe de problèmes paraboliques multi-échelles dont les coefficients de diffusion oscillent rapidement en espace à une échelle ε possiblement petite. Les méthodes numériques d'homogénéisation sont populaires pour ces problèmes, car elles capturent efficacement le comportement asymptotique lorsque ε0, sans utiliser une discrétisation spatiale aussi fine que l'échelle des oscillations rapides, comme le nécessiteraient les méthodes non raides standard. Cependant, les schémas d'homogénéisation existants ne sont en général pas précis dans les deux régimes oscillant ε0 et non oscillant ε1. Dans ce travail, nous introduisons une méthode Asymptotic Preserving basée sur une décomposition micro–macro exacte, qui reste consistante pour les deux régimes.

We consider a class of multiscale parabolic problems with diffusion coefficients oscillating in space at a possibly small scale ε. Numerical homogenization methods are popular for such problems, because they capture efficiently the asymptotic behavior as ε0, without using a dramatically fine spatial discretization at the scale of the fast oscillations. However, it is known that such homogenization schemes are in general not accurate for both the highly oscillatory regime ε0 and the non-oscillatory regime ε1. In this paper, we introduce an Asymptotic Preserving method based on an exact micro–macro decomposition of the solution, which remains consistent for both regimes.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.11.010
Crouseilles, Nicolas 1, 2 ; Lemou, Mohammed 3, 2 ; Vilmart, Gilles 4

1 INRIA, France
2 IRMAR, Université de Rennes-1, campus de Beaulieu, F-35042 Rennes Cedex, France
3 CNRS, France
4 Université de Genève, Section de mathématiques, 2–4, rue du Lièvre, CP 64, CH-1211 Genève 4, Switzerland
@article{CRMATH_2016__354_3_271_0,
     author = {Crouseilles, Nicolas and Lemou, Mohammed and Vilmart, Gilles},
     title = {Asymptotic {Preserving} numerical schemes for multiscale parabolic problems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {271--276},
     publisher = {Elsevier},
     volume = {354},
     number = {3},
     year = {2016},
     doi = {10.1016/j.crma.2015.11.010},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2015.11.010/}
}
TY  - JOUR
AU  - Crouseilles, Nicolas
AU  - Lemou, Mohammed
AU  - Vilmart, Gilles
TI  - Asymptotic Preserving numerical schemes for multiscale parabolic problems
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 271
EP  - 276
VL  - 354
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2015.11.010/
DO  - 10.1016/j.crma.2015.11.010
LA  - en
ID  - CRMATH_2016__354_3_271_0
ER  - 
%0 Journal Article
%A Crouseilles, Nicolas
%A Lemou, Mohammed
%A Vilmart, Gilles
%T Asymptotic Preserving numerical schemes for multiscale parabolic problems
%J Comptes Rendus. Mathématique
%D 2016
%P 271-276
%V 354
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2015.11.010/
%R 10.1016/j.crma.2015.11.010
%G en
%F CRMATH_2016__354_3_271_0
Crouseilles, Nicolas; Lemou, Mohammed; Vilmart, Gilles. Asymptotic Preserving numerical schemes for multiscale parabolic problems. Comptes Rendus. Mathématique, Tome 354 (2016) no. 3, pp. 271-276. doi : 10.1016/j.crma.2015.11.010. http://www.numdam.org/articles/10.1016/j.crma.2015.11.010/

[1] Abdulle, A.; E, W.; Engquist, B.; Vanden-Eijnden, E. The heterogeneous multiscale method, Acta Numer., Volume 21 (2012), pp. 1-87

[2] Abdulle, A.; Vilmart, G. Coupling heterogeneous multiscale FEM with Runge–Kutta methods for parabolic homogenization problems: a fully discrete space-time analysis, Math. Models Methods Appl. Sci., Volume 22 (2012) no. 6

[3] Allaire, G. Homogenization and two-scale convergence, SIAM J. Math. Anal., Volume 23 (1992) no. 6, pp. 1482-1518

[4] Bensoussan, A.; Lions, J.-L.; Papanicolaou, G. Asymptotic Analysis for Periodic Structures, North-Holland Publishing Co., Amsterdam, 1978

[5] Brahim-Otsmane, S.; Francfort, G.A.; Murat, F. Correctors for the homogenization of the wave and heat equations, J. Math. Pures Appl., Volume 71 (1992) no. 3, pp. 197-231

[6] N. Crouseilles, M. Lemou, G. Vilmart, Asymptotic preserving numerical schemes for multiscale parabolic problems, in preparation.

[7] E, W.; Engquist, B. The heterogeneous multiscale methods, Commun. Math. Sci., Volume 1 (2003) no. 1, pp. 87-132

[8] Efendiev, Y.; Hou, T.Y. Multiscale Finite Element Methods. Theory and Applications, Surveys and Tutorials in the Applied Mathematical Sciences, vol. 4, Springer, New York, 2009

[9] Hou, T.Y.; Wu, X.-H. A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., Volume 134 (1997) no. 1, pp. 169-189

[10] Jikov, V.; Kozlov, S.; Oleinik, O. Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, Heidelberg, 1994

[11] Jin, S. Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., Volume 21 (1999) no. 2, pp. 441-454 (electronic)

[12] Lemou, M. Relaxed micro–macro schemes for kinetic equations, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010) no. 7–8, pp. 455-460

[13] Lemou, M.; Mieussens, L. A new asymptotic preserving scheme based on micro–macro formulation for linear kinetic equations in the diffusion limit, SIAM J. Sci. Comput., Volume 31 (2008) no. 1, pp. 334-368

Cité par Sources :