Number theory/Group theory
Markoff triples and strong approximation
[Triplets de Markoff et approximation forte]
Comptes Rendus. Mathématique, Tome 354 (2016) no. 2, pp. 131-135.

Nous explorons les propriétés de transitivité du groupe des morphismes engendré par les involutions de Vieta agissant sur les solutions en congruences de l'équation de Markoff ainsi que d'autres surfaces affines cubiques de type Markoff. Ces propriétés sont determinées par les orbites finies dans Q¯ de ces actions, qui peuvent être determinées explicitement. Les resultats permettent d'établir une forme de l'approximation forte pour les points entiers sur ces surfaces et des applications du crible.

We investigate the transitivity properties of the group of morphisms generated by Vieta involutions on the solutions in congruences to the Markoff equation as well as to other Markoff type affine cubic surfaces. These are dictated by the finite Q¯ orbits of these actions and these can be determined effectively. The results are applied to give forms of strong approximation for integer points, and to sieving, on these surfaces.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.12.006
Bourgain, Jean 1 ; Gamburd, Alexander 2 ; Sarnak, Peter 1, 3

1 IAS, USA
2 The Graduate Center, CUNY, USA
3 Princeton University, USA
@article{CRMATH_2016__354_2_131_0,
     author = {Bourgain, Jean and Gamburd, Alexander and Sarnak, Peter},
     title = {Markoff triples and strong approximation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {131--135},
     publisher = {Elsevier},
     volume = {354},
     number = {2},
     year = {2016},
     doi = {10.1016/j.crma.2015.12.006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2015.12.006/}
}
TY  - JOUR
AU  - Bourgain, Jean
AU  - Gamburd, Alexander
AU  - Sarnak, Peter
TI  - Markoff triples and strong approximation
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 131
EP  - 135
VL  - 354
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2015.12.006/
DO  - 10.1016/j.crma.2015.12.006
LA  - en
ID  - CRMATH_2016__354_2_131_0
ER  - 
%0 Journal Article
%A Bourgain, Jean
%A Gamburd, Alexander
%A Sarnak, Peter
%T Markoff triples and strong approximation
%J Comptes Rendus. Mathématique
%D 2016
%P 131-135
%V 354
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2015.12.006/
%R 10.1016/j.crma.2015.12.006
%G en
%F CRMATH_2016__354_2_131_0
Bourgain, Jean; Gamburd, Alexander; Sarnak, Peter. Markoff triples and strong approximation. Comptes Rendus. Mathématique, Tome 354 (2016) no. 2, pp. 131-135. doi : 10.1016/j.crma.2015.12.006. http://www.numdam.org/articles/10.1016/j.crma.2015.12.006/

[1] Aigner, Martin Markov's Theorem and 100 Years of the Uniqueness Conjecture, Springer, 2013

[2] Bombieri, E. Continued fractions and the Markoff tree, Expo. Math., Volume 25 (2007) no. 3, pp. 187-213

[3] Bourgain, J. A modular Szemeredi–Trotter theorem for hyperbolas, C. R. Acad. Sci. Paris, Ser. I, Volume 350 (2012), pp. 793-796

[4] Bourgain, J.; Gamburd, A. Uniform expansion bounds for Cayley graphs of SL2(Fp), Ann. Math., Volume 167 (2008), pp. 625-642

[5] Bourgain, J.; Gamburd, A.; Sarnak, P. Affine linear sieve, expanders and sum product, Invent. Math., Volume 179 (2010), pp. 559-644

[6] Bourgain, Jean; Gamburd, Alex; Sarnak, Peter Generalization of Selberg's 316 theorem and affine sieve, Acta Math., Volume 207 (2011) no. 2, pp. 255-290

[7] Breuillard, E.; Gamburd, A. Strong uniform expansion in SL2(Fp), Geom. Funct. Anal., Volume 20 (2010) no. 5, pp. 1201-1209

[8] Cantat, S.; Loray, F. Dynamics on character varieties and Malgrange irreducibility of Painlevé VI equation, Ann. Inst. Fourier (Grenoble), Volume 59 (2009), pp. 2927-2978

[9] Mei-Chu, Chang Elements of large order in prime finite fields, Bull. Aust. Math. Soc., Volume 88 (2013), pp. 169-176

[10] Chang, M.-C.; Kerr, B.; Shparlinski, I.; Zannier, U. Elements of large orders on varieties over prime finite fields, J. Théor. Nr. Bordx., Volume 26 (2014), pp. 579-594

[11] Corvaja, P.; Zannier, U. On integral points on surfaces, Ann. Math. (2), Volume 160 (2004), pp. 705-726

[12] Corvaja, P.; Zannier, U. Greatest common divisors of u1, v1 in positive characteristic and rational points on curves over finite fields, J. Eur. Math. Soc., Volume 15 (2013), pp. 1927-1942

[13] Dubrovin, B.; Mazzocco, M. Monodromy of certain Painlevé-VI transcendents and reflection groups, Invent. Math., Volume 141 (2000), pp. 55-147

[14] El-Huti, M.H. Cubic surfaces of Markov type, Math. USSR Sb., Volume 22 (1974) no. 3, pp. 333-348

[15] Frobenius, G. Über die Markoffschen Zahlen, Preuss. Akad. Wiss. Sitzungsbericht (1913), pp. 458-487

[16] Gamburd, A.; Pak, I. Expansion of product replacement graphs, Combinatorica, Volume 26 (2006) no. 4, pp. 411-429

[17] Gilman, R. Finite quotients of the automorphism group of a free group, Can. J. Math., Volume 29 (1977), pp. 541-551

[18] Goldman, W. The modular group action on real SL(2)-characters of a one-holed torus, Geom. Topol., Volume 7 (2003), pp. 443-486

[19] Heath-Brown, R.; Konyagin, S. New bounds for Gauss sums derived from k-th powers and for Heilbronn's exponential sum, Q. J. Math. (2000), pp. 221-235

[20] Hooley, C. Applications of Sieve Methods to the Theory of Numbers, Cambridge Tracts in Mathematics, vol. 70, 1976

[21] Laurent, M. Exponential Diophantine equations, C. R. Acad. Sci. Paris, Ser. I, Volume 296 (1983), pp. 945-947

[22] Lisovyy, O.; Tykhyy, Y. Algebraic solutions of the sixth Painlevé equation, J. Geom. Phys., Volume 85 (2014), pp. 124-163

[23] Manin, Yu.I. Cubic Forms, 1974

[24] Markoff, A. Sur les formes quadratiques binaires indéfinies, Math. Ann., Volume 15 (1879), pp. 381-409

[25] Markoff, A. Sur les formes quadratiques binaires indéfinies, Math. Ann., Volume 17 (1880), pp. 379-399

[26] Matthews, C.R. Counting points modulo p for some finitely generated subgroups of algebraic groups, Bull. Lond. Math. Soc. (3), Volume 14 (1982), pp. 149-154

[27] Matthews, C.; Vaserstein, L.; Weisfeiler, B. Congruence properties of Zariski dense groups, Proc. Lond. Math. Soc. (3), Volume 48 (1984), pp. 514-532

[28] McCullough, D.; Wanderley, M. Nielsen equivalence of generating pairs in SL(2,q), Glasg. Math. J., Volume 55 (2013), pp. 481-509

[29] McShane, Greg; Rivin, Igor Simple curves on hyperbolic tori, C. R. Acad. Sci. Paris, Ser. I, Volume 320 (1995), pp. 1523-1528

[30] Mirzakhani, M. Counting mapping class group orbits on hyperbolic surfaces, 2015 | arXiv

[31] Sarnak, P.; Adams, S. Betti numbers of congruence groups, Isr. J. Math., Volume 88 (1994), pp. 31-72 (with an appendix by Z. Rudnick)

[32] Sarnak, P.; Saleh-Golsefidy, A. The affine sieve, J. Amer. Math. Soc., Volume 26 (2013) no. 4, pp. 1085-1105

[33] Stepanov, S.A. The number of points of a hyperelliptic curve over a prime field, Math. USSR, Izv., Volume 3 (1969) no. 5, pp. 1103-1114

[34] Vojta, P. A generalization of theorems of faltings and Thue–Siegel–Roth–Wirsing, J. Amer. Math. Soc., Volume 25 (1992), pp. 763-804

[35] Weil, A. On the Riemann hypothesis in function fields, Proc. Natl. Acad. Sci. USA, Volume 27 (1941), pp. 345-347

[36] Zagier, D. On the number of Markoff numbers below a given bound, Math. Comput., Volume 39 (1982) no. 160, pp. 709-723

Cité par Sources :