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We investigate the transitivity properties of the group of morphisms generated by Vieta 
involutions on the solutions in congruences to the Markoff equation as well as to other 
Markoff type affine cubic surfaces. These are dictated by the finite Q̄ orbits of these actions 
and these can be determined effectively. The results are applied to give forms of strong 
approximation for integer points, and to sieving, on these surfaces.
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r é s u m é

Nous explorons les propriétés de transitivité du groupe des morphismes engendré par 
les involutions de Vieta agissant sur les solutions en congruences de l’équation de 
Markoff ainsi que d’autres surfaces affines cubiques de type Markoff. Ces propriétés sont 
determinées par les orbites finies dans Q̄ de ces actions, qui peuvent être determinées 
explicitement. Les resultats permettent d’établir une forme de l’approximation forte pour 
les points entiers sur ces surfaces et des applications du crible.

© 2016 Published by Elsevier Masson SAS on behalf of Académie des sciences.

By strong approximation, we mean the extent to which the reduction mod q of the integral points on an affine variety V
over Z covers the points in V (Z/qZ). In a related direction and setting let O = � · a be the orbit in Zn of the action of a 
group � of polynomial morphisms of An , which preserve Zn and let V = Zc�(O), the Zariski closure of O. The orbit O is a 
subset of V (Z) and strong approximation for O (and a fortiori V (Z)) amounts to determining the orbit of a on the induced 
(permutation) action of � on the (finite) sets V (Z/qZ). In the case where � acts linearly and the Levi factor of G = Zc�(�)

is semisimple, this question as well as its applications to sieving theory have been developed in [27,5,32]. We note that, on 
the other hand, tori pose particularly difficult problems, in terms of sparsity of elements in an orbit, strong approximation 
and diophantine properties (see [26] for a discussion of Artin’s Conjecture in this context).

We investigate these questions in the context of Markoff’s affine cubic surface X ⊂ A3 given by the equation

X : �(x1, x2, x3) = x2
1 + x2

2 + x2
3 − 3x1x2x3 = 0. (1)
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Recall that the set M of Markoff triples ([24,25]) are natural number solutions to (1) and that all of the integer solutions 
are of the form (0, 0, 0), (ε1x1, ε2x2, ε3x3) with ε1ε2ε3 = 1, ε j = ±1, (x1, x2, x3) ∈ M. All members of M are gotten from 
a = (1, 1, 1) by repeated applications of permutations of the coordinates and the ‘Vieta’ involutions R1, R2, R3, with R3(x) =
(x1, x2, 3x1x2 − x3) and R2, R1 defined similarly. That is, M = � · a where � is the (nonlinear) group of affine morphisms 
of A3 generated by the permutations and the R j ’s. The Markoff numbers M are the coordinates of the triples M. The first 
few elements of M are

1,2,5,13,29,34,89,169,194, . . . (2)

Ms the Markoff sequence is, the set of largest coordinates of an x ∈ M counted with multiplicity and Frobenius Uniqueness 
conjecture [15] asserts that M = Ms . The sequence Ms is very sparse, as shown in [36]:

∑
m∈Ms

m≤T

1 ∼ c(log T )2 as T → ∞, (c > 0). (3)

Markoff triples and numbers arise in many different contexts: see, for example, [2] and [1] and references therein.
The fundamental strong approximation conjecture for X is the following transitivity:

Conjecture 1. For p a prime, � acts on X(p) := X(Z/pZ) with two orbits: {0} and X∗(p) = X(p)\{0}.

Remark 1. Numerical experiments indicate that not only are the Cayley graphs of the action of � on X∗(p) (with respect to 
a fixed set of generators of �) connected, but that they also form an expander family.

The Conjecture implies that the reduction mod p from M to X∗(p) is onto. This in turn implies that the only congruence 
constraints on Markoff numbers m mod p are those first noted in [15], namely that m 	= 0, ±2/3 mod p, if p ≡ 3(4) and 
p 	= 3.

Our first result is that X∗(p) has a giant orbit and that no orbit is small.

Theorem 1. For ε > 0 and p large there is an orbit C(p) of X∗(p) for which

|X∗(p)\C(p)| ≤ pε (note |X∗(p)| ∼ p2),

and all � orbits D(p) in X∗(p) satisfy |D(p)| � (log p)
1
3 .

Let E be the set of primes for which Conjecture 1 fails. This set is very small, basically we can prove the Conjecture 
unless p2 − 1 is very smooth.

Theorem 2. For ε > 0 the number of p ∈ E with p ≤ x for which the Conjecture fails, is O ε(xε).

There is an extension of Theorem 2 to composite moduli q, at least with suitable restrictions on its prime factors. 
Applying this together with some sieving (cf. [20], Chapter 7) on M and M allows us to say some things about the divisors 
of the sparse Markoff sequence Ms . For example,

Theorem 3. Almost all Markoff numbers are composite, that is
∑

p∈Ms

p prime, p≤T

1 = o
( ∑

m∈Ms

m≤T

1
)
.

Our methods can be used to prove results similar to Theorems 1 and 2 for more general Markoff type cubic surfaces. 
Namely Xk : �(x1, x2, x3) = k, the family of surfaces S A,B,C,D in [8], those in [14], and even the general such non-degenerate 
cubic surface

Y = Y (α,β,γ , δ) :
3∑

i, j=1

αi jxi x j +
3∑

j=1

β j x j + γ = δx1x2x3 (4)

with αi j , β j , γ , δ integers.
The group �Y is, again, the one generated by the corresponding Vieta involutions R1, R2, R3. For such a Y and action 

�Y we show first that there are only finitely many finite orbits in Y (Q̄), and that these may be determined effectively. The 
analogue of Conjecture 1 for Y is that for p large, �Y has one big orbit on Y (Z/pZ) and that the remaining orbits, if there 
are any, correspond to one of the finite Q̄ orbits determined above.
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The determination of the finite orbits of � on Xk(Q̄) and on S A,B,C,D(Q̄) has been carried out in [13] and [22] respec-
tively. Remarkably, for these the � action on an affine 3-space corresponds to the (nonlinear) monodromy group for Painlevé 
VI equations on their parameter spaces. In this way, the finite orbits in question turn out to correspond bijectively to those 
Painlevé VI’s, which are algebraic functions of their independent variable. Applying this to Xk shows that our version of 
Conjecture 1 for these is equivalent to the “Q -conjectures” of [28] that concern the transitivity systems for Nielsen moves 
on pairs of generators1 of SL2(Fp) (at least if p is large).

In this setting of the more general surfaces Y in (4), strong approximation for Y (ZS), where S is the set of primes 
dividing A11 A22 A33 (so that �Y preserves the S-integers ZS ), will follow from Conjecture 1 for Y (and the results we can 
prove towards it, as in Theorem 2) once we have a point of infinite order in Y (ZS ). If there is no such point we can increase 
S or replace Z by OK the ring of integers in a number field K/Q to produce such a point and with it strong approximation 
for Y

(
(OK )S

)
.

Vojta’s Conjectures and the results proven towards them ([34,11]) assert that cubic and higher degree affine surfaces 
typically have few S-integral points. In the rare cases where these points are Zariski dense such as tori (e.g., N(x1, x2, x3) = k, 
where N is the norm form of a cubic extension of Q) strong approximation fails. So these Markoff surfaces appear to 
be rather special affine cubic surfaces in not only having a Zariski dense set of integral points, but also a robust strong 
approximation. The story for rational points on projective cubic surfaces is very different from the affine integral one. Once 
there are points, there are many of them (see [23] for a detailed study).

We give a brief overview of our proof of Theorems 1 and 2 and some comments about their extensions. Theorem 1
in the weaker form that |C(p)| ∼ |X∗(p)| as p → ∞, can be viewed as the finite field analogue of [18], where it is 
shown that the action of � on the compact real components of the character variety of the mapping class group of the 
once punctured torus is ergodic. As in [18], our proof makes use of the rotations τi j ◦ R j , i 	= j where τi j permutes xi
and x j . These preserve the conic sections gotten by intersecting X∗(p) with the plane yk = xk (k different from i and j). 
If τi j ◦ R j has order t1

(
here t1

∣∣p(p − 1)(p + 1)
)
. Then x and these t1 points of the conic section are connected (i.e. are 

in the same � orbit). If t1 is maximal (i.e. is p, p − 1 or p + 1), then this entire conic section is connected and such 
conic sections in different planes that intersect are also connected. This leads to a large component, which we denote 
by C(p).

If our starting rotation has order t1, which is not maximal, then the idea’s to ensure that among the t1 points to which it 
is connected, at least one has a corresponding rotation of order t2 > t1, and then to repeat. To ensure that one can progress 
in this way a critical equation over Fp intervenes:

x + b

x
= y + 1

y
,b 	= 1

with x ∈ H1, y ∈ H2 with H1, H2 subgroups of F∗
p (or F∗

p2 ).

⎫⎪⎬
⎪⎭

(5)

If t1 = |H1| ≥ p1/2+δ (with δ small and fixed), one can apply the proven RH (Riemann Hypothesis) for curves over fi-
nite fields [35] to count the number of solutions to (5). Together with a simple inclusion/exclusion argument this shows 
that one of the t1 points connected to our starting x has a corresponding maximal rotation and hence x is connected 
to C(p).

If |H1| ≤ p1/2+δ then RH for these curves is of little use (their genus is too large) and we have to proceed using other 
methods. We assume that |H1| ≥ |H2| so that the trivial upper bound for the number of solutions to (5) is 2|H2|. What 
we need is a power saving in this upper bound in the case where |H2| is close to |H1|; that is a bound of the form 
Cτ |H1|τ , with τ < 1, Cτ < ∞ (both fixed). We know of three methods to achieve this. The first is combinatorial and while 
it is special to the equation (5) and it produces poor exponents τ , it is otherwise robust and in fact we use it specifically 
in the composite cases q needed for Theorem 3. It uses the expansion theory (cf. [16]) in SL2(Fp) ([4]) as well as the 
“projective Szemeredi–Trotter Theorem” proved in [3] for pairs of points in P1(Fp), which are incident by a subset of 
PGL2(Fp).

The second and third methods are related to “elementary” proofs of RH for curves. One can use auxiliary polynomials 
as in Stepanov’s [33] proof of RH for curves to give the desired power saving with an explicit τ (cf. [19] who deal with 
x + y = 1 and |H1| = |H2| in (5)). The third method gives the best upper bound, namely

20 max
{
(|H1|.|H2|)1/3,

|H1|.|H2|
p

}

and is due to Corvaja and Zannier [12]. It uses their method for estimating the g.c.d. of u − 1 and v − 1 in terms of the 
degrees of u and v and their supports, as well as (hyper) Wronskians. As they show, their technique is also robust and can 
be used to give an elementary proof of RH for curves.

The above lead to a proof of part 1 of Theorem 1. To continue one needs to deal with t1, which is very small (here 
|H1| = t1 which divides p2 − 1).

1 The connectedness [17] and expansion ([16,7]) for T -systems of SL2(Fp) on 4 or more generators are known.
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To handle these, we lift to characteristic zero and examine the finite orbits of � in X(Q̄). In fact, by the Chebotarev 
Density Theorem, a necessary condition for Conjecture 1 to hold is that there are no such orbits other than {0}. Again using 
the rotations in the conic sections by planes one finds that any such finite orbit must be among the solutions to

(t1 + t−1
1 )2 + (t2 + t−1

2 )2 + (t3 + t−1
3 )2 = (t1 + t−1

1 )(t2 + t−1
2 )(t3 + t−1

3 )

with t j ’s roots of unity. (6)

For this particular surface X one can show using the inequality between the geometric and arithmetic means, that (6) has 
no nontrivial solutions for complex numbers with |t j | = 1 (pointed out to us by Bombieri). For the more general surfaces Xk , 
S A,B,C,D and those in (4), there is a variety of solutions with |t j| = 1. However, Lang’s Gm Conjecture, which is established 
effectively (see [21,31]), yields that there are only finitely many solutions to these equations in roots of unity. This allows 
for an explicit determination of the finite orbits of �Y in Y (Q̄) (as noted earlier for the cubic surfaces S A,B,C,D , the long 
list of these orbits [22] correspond to the algebraic Painlevé VI solutions). This Q̄ analysis leads to part 2 of Theorem 1
and, combined with the discussion above, it yields a proof of Conjecture 1, at least if p2 − 1 is not very smooth. To prove 
Theorem 1, we need to show that there are very few primes for which the above arguments fail. This is done by extending 
the arguments and results in [9] and [10] concerning points (x, y) on irreducible curves over Fp for which ord (x) + ord (y)

is small (here ord (x) is the order of x in F∗
p).

Our methods fall short of dealing with all p, specifically for those rare p’s for which p2 −1 is very smooth. The following 
hypothesis, which is a strong variant of the conjectures of M.C. Chang and B. Poonen [9], would suffice to deal with all 
large p’s.

Hypothesis. Given d ∈N there is δ > 0 and K = K (δ, d) such that for p large and f (x, y) absolutely irreducible over Fp and 
of degree d and f (x, y) = 0 is not a translate of a subtorus of (F̄∗

p)2, the set of (x, y) ∈ (F∗
p)2 for which f (x, y) = 0 and 

max(ord x, ord y) ≤ pδ , is at most K .

For the extension of Theorem 2 to composite moduli, we take q = p1 p2 . . . pν with p� ≡ 1(4) and for which Theorem 2
holds, and make use of the special conic sections x j = 2(mod p�), which consists of two lines. This allows us to bypass the 
difficulties connected with maximal orders of elements in (Z/qZ)∗ and Charmichael numbers. The proof of Theorem 3 also 
necessitates extending Zagier’s result (4) to counting such m’s subject to a congruence mod q (cf. [6]), which is accomplished 
using the methods in [29] or [30].
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