Harmonic analysis
Rough fractional integrals and its commutators on variable Morrey spaces
Comptes Rendus. Mathématique, Volume 353 (2015) no. 12, pp. 1117-1122.

In this paper, the authors obtain the boundedness of fractional integrals with rough kernel on variable Morrey spaces. The corresponding boundedness for commutators generalized by the fractional integral and BMO function is also considered.

Dans cet article, les auteurs obtiennent la bornitude des intégrales fractionnaires avec un noyau singulier dans des espaces de Morrey (avec exposant variable). De plus, la bornitude des commutateurs généralisés entre ces opérateurs et la multiplication par une fonction BMO est aussi considérée.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.09.024
Tan, Jian 1; Zhao, Jiman 1

1 School of Mathematical Sciences, Beijing Normal University, Key Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, PR China
@article{CRMATH_2015__353_12_1117_0,
     author = {Tan, Jian and Zhao, Jiman},
     title = {Rough fractional integrals and its commutators on variable {Morrey} spaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1117--1122},
     publisher = {Elsevier},
     volume = {353},
     number = {12},
     year = {2015},
     doi = {10.1016/j.crma.2015.09.024},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2015.09.024/}
}
TY  - JOUR
AU  - Tan, Jian
AU  - Zhao, Jiman
TI  - Rough fractional integrals and its commutators on variable Morrey spaces
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 1117
EP  - 1122
VL  - 353
IS  - 12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2015.09.024/
DO  - 10.1016/j.crma.2015.09.024
LA  - en
ID  - CRMATH_2015__353_12_1117_0
ER  - 
%0 Journal Article
%A Tan, Jian
%A Zhao, Jiman
%T Rough fractional integrals and its commutators on variable Morrey spaces
%J Comptes Rendus. Mathématique
%D 2015
%P 1117-1122
%V 353
%N 12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2015.09.024/
%R 10.1016/j.crma.2015.09.024
%G en
%F CRMATH_2015__353_12_1117_0
Tan, Jian; Zhao, Jiman. Rough fractional integrals and its commutators on variable Morrey spaces. Comptes Rendus. Mathématique, Volume 353 (2015) no. 12, pp. 1117-1122. doi : 10.1016/j.crma.2015.09.024. http://www.numdam.org/articles/10.1016/j.crma.2015.09.024/

[1] Capone, C.; Cruz-Uribe, D.; Fiorenza, A. The fractional maximal operators and fractional integrals on variable Lp spaces, Rev. Mat. Iberoam., Volume 23 (2007), pp. 743-770

[2] Cruz-Uribe, D.; Fiorenza, A. Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Birkhäuser, Basel, Switzerland, 2013

[3] Cruz-Uribe, D.; Fiorenza, A.; Martell, J.; Pérez, C. The boundedness of classical operators on variable Lp spaces, Ann. Acad. Sci. Fenn., Math., Volume 31 (2006), pp. 239-264

[4] Cruz-Uribe, D.; Wang, L. Variable Hardy spaces, Indiana Univ. Math. J., Volume 63 (2014) no. 2, pp. 447-493

[5] Diening, L.; Harjulehto, P.; Hästö, P.; Růz̆ička, M. Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Heidelberg, Germany, 2011

[6] Hardy, G.; Littlewood, J. Some properties of fractional integrals, Math. Z., Volume 27 (1928), pp. 565-606

[7] Ho, K. Atomic decomposition of Hardy spaces and characterization of BMO via Banach function spaces, Anal. Math., Volume 38 (2012) no. 3, pp. 173-185

[8] Ho, K. The fractional integral operators on Morrey spaces with variable exponent on unbounded domains, Math. Inequal. Appl., Volume 16 (2013), pp. 363-373

[9] Izuki, M. Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent, Rend. Circ. Mat. Palermo, Volume 59 (2010), pp. 461-472

[10] Kováčik, O.; Rákosník, J. On spaces Lp(x) and Wk,p(x), Czechoslov. Math. J., Volume 41 (1991), pp. 592-618

[11] Muckenhoupt, B.; Wheeden, R. Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., Volume 192 (1974), pp. 261-274

[12] Nakai, E.; Sawano, Y. Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal., Volume 262 (2012), pp. 3665-3748

[13] Peetre, J. On the theory of Lp,λ spaces, J. Funct. Anal., Volume 4 (1969), pp. 71-87

[14] Sobolev, S. On a theorem of functional analysis, Mat. Sb., Volume 46 (1938) no. 4, pp. 471-497

[15] Tan, J.; Liu, Z. Homogeneous fractional integrals on variable exponent function spaces, Acta Math. Sin. (Chin. Ser.), Volume 58 (2015) no. 2, pp. 309-320

[16] Tan, J.; Zhao, J. Fractional integrals on variable Hardy–Morrey spaces, Acta Math. Hung. (2015) (in press)

[17] Wang, H. Boundedness of fractional integral operators with rough kernels on weighted Morrey spaces, Acta Math. Sin. (Chin. Ser.), Volume 56 (2013) no. 2, pp. 175-186

[18] Xu, J. Variable Besov and Triebel–Lizorkin spaces, Ann. Acad. Sci. Fenn., Math., Volume 33 (2008) no. 2, pp. 511-522

Cited by Sources: