Differential geometry
On compact Ricci solitons in Finsler geometry
Comptes Rendus. Mathématique, Volume 353 (2015) no. 11, pp. 1023-1027.

Ricci solitons on Finsler spaces, previously developed by the present authors, are a generalization of Einstein spaces, which can be considered as a solution to the Ricci flow on compact Finsler manifolds. In the present work, it is shown that on a Finslerian space, a forward complete shrinking Ricci soliton is compact if and only if it is bounded. Moreover, it is proved that a compact shrinking Finslerian Ricci soliton has finite fundamental group, and hence the first de Rham cohomology group vanishes.

Les solitons de Ricci sur les espaces de Finsler, précédemment définis et étudiés par les auteurs de la présente note, sont une généralisation des espaces d'Einstein, et peuvent être considérés comme des solutions du flot de Ricci sur les variétés finslériennes compactes. Dans ce travail, on démontre qu'un soliton de Ricci complet contractant en temps croissant sur un espace de Finsler est compact si et seulement s'il est borné. En outre, il est démontré qu'un soliton de Ricci contractant compact donne lieu à un groupe fondamental de type fini et donc que le premier groupe de cohomologie s'annule.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.09.012
Yar Ahmadi, Mohamad 1; Bidabad, Behroz 1

1 Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
@article{CRMATH_2015__353_11_1023_0,
     author = {Yar Ahmadi, Mohamad and Bidabad, Behroz},
     title = {On compact {Ricci} solitons in {Finsler} geometry},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1023--1027},
     publisher = {Elsevier},
     volume = {353},
     number = {11},
     year = {2015},
     doi = {10.1016/j.crma.2015.09.012},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2015.09.012/}
}
TY  - JOUR
AU  - Yar Ahmadi, Mohamad
AU  - Bidabad, Behroz
TI  - On compact Ricci solitons in Finsler geometry
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 1023
EP  - 1027
VL  - 353
IS  - 11
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2015.09.012/
DO  - 10.1016/j.crma.2015.09.012
LA  - en
ID  - CRMATH_2015__353_11_1023_0
ER  - 
%0 Journal Article
%A Yar Ahmadi, Mohamad
%A Bidabad, Behroz
%T On compact Ricci solitons in Finsler geometry
%J Comptes Rendus. Mathématique
%D 2015
%P 1023-1027
%V 353
%N 11
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2015.09.012/
%R 10.1016/j.crma.2015.09.012
%G en
%F CRMATH_2015__353_11_1023_0
Yar Ahmadi, Mohamad; Bidabad, Behroz. On compact Ricci solitons in Finsler geometry. Comptes Rendus. Mathématique, Volume 353 (2015) no. 11, pp. 1023-1027. doi : 10.1016/j.crma.2015.09.012. http://www.numdam.org/articles/10.1016/j.crma.2015.09.012/

[1] Akbar-Zadeh, H. Sur les espaces de Finsler á courbures sectionnelles constantes, Acad. R. Belg. Bull. Cl. Sci. (5), Volume 74 (1988), pp. 281-322

[2] Akbar-Zadeh, H. Initiation to Global Finslerian Geometry, vol. 68, Elsevier Science, 2006

[3] Anastasiei, M. A generalization of Myers theorem, An. Stiint. Univ. “Al.I. Cuza” Din Iasi (S.N.) Mat., Volume LIII (2007) no. Supliment, pp. 33-40

[4] Bao, D.; Chern, S.S.; Shen, Z. An Introduction to Riemann–Finsler Geometry, Graduate Texts in Mathematics, vol. 200, Springer, 2000

[5] Bao, D. On two curvature-driven problems in Riemann–Finsler geometry, Adv. Stud. Pure Math., Volume 48 (2007), pp. 19-71

[6] Bidabad, B.; Joharinad, P. Conformal vector fields on complete Finsler spaces of constant Ricci curvature, Differ. Geom. Appl., Volume 33 (2014)

[7] Bidabad, B.; Yarahmadi, M. On quasi-Einstein Finler spaces, Bull. Iran. Math. Soc., Volume 40 (2014) no. 4, pp. 921-930

[8] Bidabad, B.; Yar Ahmadi, M. Convergence of Finslerian metrics under Ricci flow, Sci. China Math. (2015) (in press)

[9] Hamilton, R.S. Three-manifolds with positive Ricci curvature, J. Differ. Geom., Volume 17 (1982) no. 2, pp. 255-306

[10] López, M.F.; Río, E.G. A remark on compact Ricci solitons, Math. Ann., Volume 340 (2008) no. 4, pp. 893-896

[11] Lott, J. Some geometric properties of the Bakry–Émery–Ricci tensor, Comment. Math. Helv., Volume 78 (2003), pp. 865-883

[12] Wylie, W. Complete shrinking Ricci solitons have finite fundamental group, Proc. Amer. Math. Soc., Volume 136 (2008) no. 5, pp. 1803-1806

[13] Yano, K. The Theory of Lie Derivatives and Its Applications, North-Holland Publishers, 1957

Cited by Sources: