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Ricci solitons on Finsler spaces, previously developed by the present authors, are a 
generalization of Einstein spaces, which can be considered as a solution to the Ricci flow 
on compact Finsler manifolds. In the present work, it is shown that on a Finslerian space, a 
forward complete shrinking Ricci soliton is compact if and only if it is bounded. Moreover, 
it is proved that a compact shrinking Finslerian Ricci soliton has finite fundamental group, 
and hence the first de Rham cohomology group vanishes.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Les solitons de Ricci sur les espaces de Finsler, précédemment définis et étudiés par les 
auteurs de la présente note, sont une généralisation des espaces d’Einstein, et peuvent être 
considérés comme des solutions du flot de Ricci sur les variétés finslériennes compactes. 
Dans ce travail, on démontre qu’un soliton de Ricci complet contractant en temps croissant 
sur un espace de Finsler est compact si et seulement s’il est borné. En outre, il est 
démontré qu’un soliton de Ricci contractant compact donne lieu à un groupe fondamental 
de type fini et donc que le premier groupe de cohomologie s’annule.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The Ricci flow in Riemannian geometry was introduced by R.S. Hamilton in 1982, cf. [9], and since then has been exten-
sively studied thanks to its applications in geometry, physics and different branches of real-world problems. Quasi-Einstein 
metrics or Ricci solitons are considered as solutions to the Ricci flow equation and are subject of great interest in geometry 
and physics, specially in relation with string theory, cf. [10].

Let (M, g) be a Riemannian manifold, a triple (M, g, X) is said to be a quasi-Einstein metric or Ricci soliton if g satisfies 
the equation

2 Ric +LX g = 2λg, (1)
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where Ric is the Ricci tensor, X a smooth vector field on M , LX the Lie derivative along X , and λ a real constant. A Ricci 
soliton is said to be shrinking, steady or expanding if λ > 0, λ = 0 or λ < 0, respectively. If the vector field X is the gradient 
of a function f , then (M, g, X) is said to be gradient and (1) takes the familiar form:

Ric + ∇∇ f = λg.

On a compact Riemannian manifold, a quasi-Einstein metric is a special solution to the Ricci flow equation defined by

∂

∂t
g(t) = −2 Ric, g(t = 0) := g0 .

J. Lott has shown that the fundamental group of a closed Riemannian manifold is finite for any gradient shrinking Ricci 
soliton, cf. [11]. M.F. López and E.G. Río have proved that a Riemannian compact shrinking Ricci soliton has finite fun-
damental group, cf. [10]. W. Wylie has shown that a Riemannian complete shrinking Ricci soliton has finite fundamental 
group, cf. [12].

The concept of Ricci flow on Finsler manifolds is defined first by D. Bao, cf. [5], using the Ricci tensor defined by H. Akbar-
Zadeh, [2]. Recently the present authors have developed the concept of Ricci solitons as a generalization of Einstein spaces 
and convergence of Ricci flow on Finsler spaces, cf. [7,8]. It is proved that if there is a Ricci soliton on a compact Finsler 
manifold then there exists a solution to the Ricci flow equation and vice-versa. Since Finslerian Ricci solitons generalize Ein-
stein manifolds, it is natural to ask whether classical results like the Bonnet–Myers theorem for Finsler–Einstein manifolds 
of positive Ricci scalar remain valid for Finslerian Ricci solitons. In the present work, in analogy with Riemannian space, 
the shrinking Finslerian Ricci soliton is defined and it is shown that a forward complete shrinking Finslerian Ricci soliton 
(M, F , V ) is compact if and only if ‖V ‖ is bounded. Moreover, it is proved that in this case the fundamental group is finite 
and, as a consequence, the first de Rham cohomology group of M vanishes.

2. Preliminaries and notations

Let M be a real n-dimensional differentiable manifold. We denote by T M its tangent bundle and by π : T M0 −→ M , 
the fiber bundle of non-zero tangent vectors. A Finsler structure on M is a function F : T M −→ [0, ∞), with the following 
properties:

I. Regularity: F is C∞ on the entire slit tangent bundle T M0 = T M\0.
II. Positive homogeneity: F (x, λy) = λF (x, y) for all λ > 0.
III. Strong convexity: the n × n Hessian matrix gij = ([ 1

2 F 2]yi y j ) is positive definite at every point of T M0. A Finsler 
manifold (M, F ) is a pair consisting of a differentiable manifold M and a Finsler structure F . The formal Christoffel symbols 
of second kind and spray coefficients are denoted respectively by

γ i
jk := gis 1

2

(∂ gsj

∂xk
− ∂ g jk

∂xs
+ ∂ gks

∂x j

)
,

where gij(x, y) = [ 1
2 F 2]yi y j , and Gi := 1

2 γ i
jk y j yk . We consider also the reduced curvature tensor Ri

k , which is expressed 
entirely in terms of the x and y derivatives of spray coefficients Gi .

Ri
k := 1

F 2

(
2
∂Gi

∂xk
− ∂2Gi

∂x j∂ yk
y j + 2G j ∂2Gi

∂ y j∂ yk
− ∂Gi

∂ y j

∂G j

∂ yk

)
. (2)

In the general Finslerian setting, one of the Ricci tensors is introduced by H. Akbar-Zadeh [1] as follows:

Ric jk := [1

2
F 2Ric]y j yk , (3)

where Ric = Ri
i and Ri

k is defined by (2). Akbar-Zadeh’s definition of Einstein–Finsler space related to this Ricci tensor is 
obtained as a critical point of an Einstein–Hilbert functional and, (see [2] chapter IV). One of the advantages of the Ricci 
quantity defined here is its independence of the choice of Cartan, Berwald or Chern (Rund) connections. Based on the 
Akbar-Zadeh’s Ricci tensor, in analogy with Eq. (3), D. Bao has considered the following natural extension of Ricci flow in 
Finsler geometry, cf. [5]:

∂

∂t
g jk = −2Ric jk, g(t = 0) := g0 .

This equation leads to the following differential equation

∂

∂t
(log F (t)) = −Ric, F (t = 0) := F0 ,

where F0 is the initial Finsler structure. Let V = V i(x) ∂
∂xi

be a vector field on M .
The Lie derivative of a Finsler metric tensor g jk is given in the following tensorial form by

LV̂ g jk = ∇ j Vk + ∇k V j + 2(∇0 V l)Cljk, (4)
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where V̂ is the complete lift of a vector field V on M , ∇ is the Cartan connection, ∇0 = yp∇p and ∇p = ∇ δ
δxp

, (see [13], p. 
180, and see [6]).

Let M be a connected smooth manifold, then there exists a simply connected smooth manifold M̃ , called the universal 
covering manifold of M , and a smooth covering map p : M̃ −→ M such that it is unique up to a diffeomorphism. The 
complete lift of p is a map p̄ : T M̃ −→ T M is given by

p̄(x̃, ỹ) = (p(x̃), ỹi ∂ p

∂ x̃i
) = (p(x̃), ỹi ∂ p j

∂ x̃i

∂

∂x j
),

where ỹ ∈ Tx̃M̃ .

3. Shrinking Finslerian Ricci soliton

Let (M, F0) be a Finsler manifold and V = V i(x) ∂

∂xi a vector field on M . We call the triple (M, F0, V ) a Finslerian 
quasi-Einstein or a Finslerian Ricci soliton if g jk , the Hessian related to the Finsler structure F0, satisfies

2Ric jk +LV̂ g jk = 2λg jk, (5)

where V̂ is the complete lift of V and λ ∈ R. A Finslerian Ricci soliton is said to be shrinking, steady or expanding if 
λ > 0, λ = 0 or λ < 0, respectively. The Finslerian Ricci soliton is said to be forward complete (resp. compact) if (M, F0) is 
forward complete (resp. compact). Note that according to the Hopf–Rinow’s theorem, the both notions forward complete 
and forward geodesically complete are equivalent. Denote by S M the sphere bundle, defined by S M := ⋃

x∈M
SxM where 

SxM := {y ∈ TxM|F (x, y) = 1}. For a vector field X = Xi(x) ∂

∂xi on M , define

‖X‖x = max
y∈Sx M

√
gij(x, y)Xi X j, (6)

where x ∈ M (see [4] at p. 321). Since Sx M is compact, ‖X‖x is well defined.

Theorem 1. Let (M, F0) be a forward geodesically complete Finsler manifold satisfying

2 Ric jk +LV̂ g jk ≥ 2λg jk, (7)

where λ > 0. Then, M is compact if and only if ‖V ‖ is bounded on M by a constant D and moreover, in such a case, diam(M) ≤
π
λ

(
D + √

D2 + λ(n − 1)
)
.

Proof. Let M be a compact manifold, it is clear that ‖V ‖ is bounded on M . Conversely, let p, q be two points in M joined 
by a minimal geodesic γ parameterized by the arc length t , γ : [0, ∞) −→ M . Using (4) we have along γ :

γ ′ j
γ ′kLV̂ g jk = γ ′ j

γ ′k(∇ j Vk + ∇k V j + 2(∇0 V l)Cljk
)
. (8)

Along γ , we have γ ′ jγ ′k(∇0 V l)Cljk(γ (t), γ ′(t)) = 0. Hence (8) reduces to

γ ′ j
γ ′kLV̂ g jk = 2γ ′ j

γ ′k∇ j Vk. (9)

On the other hand, by compatibility of metric with the Cartan connection, we have along the geodesic γ :

γ ′ j
γ ′k∇ j Vk = ∇γ ′ j δ

δx j
(γ ′k Vk) = ∇γ̂ ′(γ ′k Vk) = d

dt
(γ ′k Vk), (10)

where γ̂ ′ = γ ′ j δ

δx j . Replacing (10) in (9), we have:

γ ′ j
γ ′kLV̂ g jk = 2

d

dt
(γ ′k Vk). (11)

By means of (7) and (11) we get:

2γ ′ j
γ ′kRic jk + 2

d

dt
(γ ′k Vk) ≥ 2λγ ′ j

γ ′k g jk.

By the last inequality, we conclude that

γ ′ j
γ ′kRic jk ≥ λγ ′ j

γ ′k g jk − d

dt
(γ ′k Vk) = λ + d

dt
(−γ ′k Vk).

On the other hand, by means of the Cauchy–Schwarz inequality, we have along the geodesic γ :
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|−γ ′k Vk| = |γ ′k Vk| = |gkl(γ (t), γ ′(t))γ ′k V l|
≤ |gpq(γ (t), γ ′(t))γ ′p

γ ′q| 1
2 |grs(γ (t), γ ′(t))V r V s| 1

2

≤ max
y∈Sγ (t)M

|grs(γ (t), y)V r V s| 1
2 = ‖V ‖γ (t).

Since ‖V ‖ is assumed to be bounded on M , there exists a positive constant D such that ‖V ‖γ (t) ≤ D and therefore along γ , 
|−γ ′k Vk| ≤ D . Now, the result follows from generalization of Mayers Theorem, cf. [3]. That is, M is compact and moreover 
it is bounded from above by diam(M) ≤ π

λ
(D + √

D2 + λ(n − 1)). This completes the proof. �
Corollary 2. Let (M, F , V ) be a forward complete shrinking Finslerian Ricci soliton. Then, M is compact if and only if ‖V ‖ is bounded 
on M by a constant D and moreover, in this case, diam(M) ≤ π

λ
(D + √

D2 + λ(n − 1)).

Theorem 3. Let (M, F ) be a compact Finsler manifold satisfying (7). Then the fundamental group π1(M) of M is finite and its first 
cohomology group vanishes, i.e., H1

dR(M) = 0.

Proof. Let M̃ be the universal covering manifold of M with the smooth covering map p : M̃ −→ M . Pull back of complete 
lift of the smooth covering map p, i.e., p̄∗ F := F ◦ p̄ : T M̃ −→ [0, ∞) is a Finsler structure on M̃ . In fact, we check simply 
the three conditions of the Finsler structure. We have the regularity condition since F and p are C∞ , and so is p̄∗ F . Next,

p̄∗ F (x, λy) = F ◦ p̄(x, λy) = F (p(x), λyi ∂ p

∂xi
)

= λF (p(x), yi ∂ p

∂xi
) = λp̄∗ F (x, y).

Thus the positive homogeneity is satisfied. Finally, assume that p̄∗xi = x̃i and p̄∗ yi = ỹi . For strong convexity we have:

g̃i j := [1

2
(p̄∗ F )2] ỹi ỹ j = 1

2

∂2((p̄∗ F )2)

∂ ỹi∂ ỹ j
= 1

2

∂2(p̄∗ F 2)

∂ ỹi∂ ỹ j
.

One can easily check that

∂(p̄∗ F 2)

∂ ỹi
= p̄∗ ∂ F 2

∂ yi
,

from which

g̃i j = [1

2
(p̄∗ F )2] ỹi ỹ j = 1

2

∂2(p̄∗ F 2)

∂ ỹi∂ ỹ j
= p̄∗[1

2
F 2]yi y j = p̄∗gij . (12)

Using the facts that [ 1
2 F 2]yi y j is positive definite on T M0 and p̄∗ is a local diffeomorphism (note that p is the smooth cov-

ering map), p̄∗[ 1
2 F 2]yi y j is also positive definite on T M̃0 and hence F̃ := p̄∗ F defines a Finsler structure on T M̃0. Moreover, 

(M̃, F̃ ) is locally isometric to (M, F ). Let W denote the lift of V , that is, W := p∗V = (p−1)∗V . More precisely, since p is 
a local diffeomorphism, we can define W := p∗V = (p−1)∗V . By means of the local isometry p : (M̃, F̃ ) −→ (M, F ) and the 
inequality (7), we have:

p̄∗(2Ric jk +LV̂ g jk) ≥ 2̄ p∗(λg jk).

By linearity of p̄∗ we get:

2 p̄∗Ric jk + p̄∗LV̂ g jk ≥ 2λp̄∗(g jk). (13)

By means of (12), W = p∗V and commutativity of Lie derivative and the pull back p̄∗ , we obtain:

p̄∗LV̂ g jk = LŴ g̃ jk. (14)

On the other hand, one can easily check that R̃ic jk = p̄∗Ric jk . In fact we have:

p̄∗Ric jk = p̄∗[1

2
F 2Ric]y j yk = 1

2
p̄∗ ∂2(F 2Ric)

∂ yi∂ y j

= 1

2

∂2

∂ ỹi∂ ỹ j
(p̄∗(F 2Ric)) = 1

2

∂2

∂ ỹi∂ ỹ j

(
p̄∗(F 2)p̄∗(Ric)

)
.

Since p̄∗(Ric) = R̃ic, cf. [7], and p̄∗(F 2) = F̃ 2, we get



M. Yar Ahmadi, B. Bidabad / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 1023–1027 1027
p̄∗Ric jk = 1

2

∂2

∂ ỹi∂ ỹ j

(
p̄∗(F 2)p̄∗(Ric)

)
= 1

2

∂2

∂ ỹi∂ ỹ j
( F̃ 2R̃ic) = R̃ic jk. (15)

Replacing (12), (14) and (15) in (13), leads to

2R̃ic jk +LŴ g̃ jk ≥ 2λg̃ jk.

On the other hand, we have:

‖W ‖x̃ = max
ỹ∈Sx̃ M̃

(
(p̄∗gij)(x̃, ỹ)W i W j) 1

2 = max
ỹ∈Sx̃ M̃

(
gij(p(x̃), ỹi ∂ p

∂ x̃i
)p̄∗W i p̄∗W j) 1

2

≤ max
y∈Sx̃ M̃

(
gij(p(x̃), y)p̄∗W i p̄∗W j) 1

2 = ‖p̄∗W ‖p(x̃). (16)

By compactness of M , the norm ‖p̄∗W ‖ is bounded on M and therefore, by means of (16), the norm ‖W ‖ is bounded on M̃ . 
It follows from Theorem 1 that (M̃, F̃ ) is compact. Thus the closed subset p−1(x) of M̃ is compact and, being discrete, is 
finite. By assumption, M is connected, so all of its fundamental groups π1(M, x) are isomorphic, where x denotes the base 
point. Since M̃ is a universal cover, π1(M, x) is bijective with p−1(x) and therefore π1(M) is finite. Thus, by a well-known 
result, the first cohomology group H1

dR(M) = 0. This completes the proof. �
Corollary 4. Let (M, F , V ) be a compact shrinking Finslerian Ricci soliton. Then the fundamental group π1(M) of M is finite and 
therefore H1

dR(M) = 0.

Corollary 5. Let (M, F , V ) be a compact shrinking Finslerian Ricci soliton. Then the fundamental group π1(S M) of S M is finite and 
therefore H1

dR(S M) = 0.

Proof. Let M̃ be the universal covering manifold of M with the smooth covering map p : M̃ −→ M . It is well known that 
the homotopic sequence of the fiber bundle (S M̃, π̃ , M̃, Sn−1) is exact. That is that

· · · −→ π1(Sn−1) −→ π1(S M̃) −→ π1(M̃) −→ · · · , (17)

is exact. Since M̃ is simply connected, π1(M̃) = 0. We know that π1(Sn−1) = 0. Thus, by (17) we get π1(S M̃) = 0. One 
can easily check that p̄ : S M̃ −→ S M is a smooth covering map. Therefore, S M̃ is the universal covering manifold of S M . 
According to the proof of Theorem 3, M̃ is compact and so is S M̃ . Thus the fundamental group π1(S M) is finite and 
therefore H1

dR(S M) = 0. �
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