Dynamical systems
Exponential decay of correlations for a real-valued dynamical system embedded in R2
Comptes Rendus. Mathématique, Volume 353 (2015) no. 11, pp. 1041-1045.

We study the real valued process {Xt,tN} defined by Xt+2=φ(Xt,Xt+1), where the Xt are bounded. We aim at proving the decay of correlations for this model, under regularity assumptions on the transformation φ.

On étudie le processus réel {Xt,tN} défini par Xt+2=φ(Xt,Xt+1), les Xt étant bornés. Sous des hypothèses de régularité sur la transformation φ, on établit la décroissance des corrélations pour ce modèle.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.07.015
Jager, Lisette 1; Maes, Jules 1; Ninet, Alain 1

1 Laboratoire de mathématiques, FR CNRS 3399, EA 4535, Université de Reims Champagne-Ardenne, Moulin de la Housse, BP 1039, 51687 Reims, France
@article{CRMATH_2015__353_11_1041_0,
     author = {Jager, Lisette and Maes, Jules and Ninet, Alain},
     title = {Exponential decay of correlations for a real-valued dynamical system embedded in $ {\mathbb{R}}^{2}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1041--1045},
     publisher = {Elsevier},
     volume = {353},
     number = {11},
     year = {2015},
     doi = {10.1016/j.crma.2015.07.015},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2015.07.015/}
}
TY  - JOUR
AU  - Jager, Lisette
AU  - Maes, Jules
AU  - Ninet, Alain
TI  - Exponential decay of correlations for a real-valued dynamical system embedded in $ {\mathbb{R}}^{2}$
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 1041
EP  - 1045
VL  - 353
IS  - 11
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2015.07.015/
DO  - 10.1016/j.crma.2015.07.015
LA  - en
ID  - CRMATH_2015__353_11_1041_0
ER  - 
%0 Journal Article
%A Jager, Lisette
%A Maes, Jules
%A Ninet, Alain
%T Exponential decay of correlations for a real-valued dynamical system embedded in $ {\mathbb{R}}^{2}$
%J Comptes Rendus. Mathématique
%D 2015
%P 1041-1045
%V 353
%N 11
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2015.07.015/
%R 10.1016/j.crma.2015.07.015
%G en
%F CRMATH_2015__353_11_1041_0
Jager, Lisette; Maes, Jules; Ninet, Alain. Exponential decay of correlations for a real-valued dynamical system embedded in $ {\mathbb{R}}^{2}$. Comptes Rendus. Mathématique, Volume 353 (2015) no. 11, pp. 1041-1045. doi : 10.1016/j.crma.2015.07.015. http://www.numdam.org/articles/10.1016/j.crma.2015.07.015/

[1] Alves, J.F.; Freitas, J.M.; Luzatto, S.; Vaienti, S. From rates of mixing to recurrence times via large deviations, Adv. Math., Volume 228 (2011) no. 2, pp. 1203-1236

[2] Collet, P.; Eckmann, J.-P. Concepts and Results in Chaotic Dynamics: A Short Course, Theoretical and Mathematical Physics, Springer-Verlag, Berlin, 2006

[3] Hofbauer, F.; Keller, G. Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Z., Volume 180 (1982), pp. 119-140

[4] Ionescu Tulcea, C.T.; Marinescu, G. Théorie ergodique pour des classes d'opérations non complètement continues, Ann. of Math. (2), Volume 52 (1950), pp. 140-147

[5] Lasota, A.; Mackey, M.C. Chaos, Fractals and Noise: Stochastic Aspects of Dynamics, Springer Verlag, New York, 1998

[6] Liverani, C. Multidimensional expanding maps with singularities: a pedestrian approach, Ergod. Theory Dyn. Syst., Volume 33 (2013) no. 1, pp. 168-182

[7] Saussol, B. Absolutely continuous invariant measures for multidimensional expanding maps, Isr. J. Math., Volume 116 (2000), pp. 223-248

[8] Tong, H. Nonlinear Time Series: A Dynamical System Approach (with an appendix by K.S. Chan), Oxford Statistical Science Series, vol. 6, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1990

[9] Tong, H. Nonlinear time series analysis since 1990: some personal reflections, Acta Math. Appl. Sin. Engl. Ser., Volume 18 (2002) no. 2, pp. 177-184

[10] Young, L.-S. Recurrence times and rates of mixing, Isr. J. Math., Volume 110 (1999), pp. 153-188

Cited by Sources: