Combinatorics/Group theory
Combinatorics on a family of reduced Kronecker coefficients
Comptes Rendus. Mathématique, Volume 353 (2015) no. 10, pp. 865-869.

The reduced Kronecker coefficients are particular instances of Kronecker coefficients, that nevertheless contain enough information to compute all Kronecker coefficients from them. In this note, we compute the generating function of a family of reduced Kronecker coefficients. We show that these reduced Kronecker coefficients count plane partitions. This allows us to check that these coefficients satisfy the saturation conjecture, and that they are weakly increasing. Thanks to its generating function, we can describe our family by a quasipolynomial, specifying its degree and period.

Les coefficients de Kronecker réduits sont des coefficients de Kronecker particuliers, qui permettent néanmoins de recalculer tous les coefficients de Kronecker. Dans cette note, nous calculons la fonction génératrice d'une famille particulière de coefficients de Kronecker réduits. Nous exprimons sa relation avec les partitions planes, ce qui nous permet de vérifier que cette famille possède la propriété de saturation, ainsi que la propriété de monotonie. Grâce à cette fonction génératrice, nous pouvons décrire les coefficients considérés au moyen d'une formule quasi polynomiale, dont nous précisons le degré et la période.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.07.012
Colmenarejo, Laura 1; Rosas, Mercedes 1

1 Department of Algebra, University of Seville, Spain
@article{CRMATH_2015__353_10_865_0,
     author = {Colmenarejo, Laura and Rosas, Mercedes},
     title = {Combinatorics on a family of reduced {Kronecker} coefficients},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {865--869},
     publisher = {Elsevier},
     volume = {353},
     number = {10},
     year = {2015},
     doi = {10.1016/j.crma.2015.07.012},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2015.07.012/}
}
TY  - JOUR
AU  - Colmenarejo, Laura
AU  - Rosas, Mercedes
TI  - Combinatorics on a family of reduced Kronecker coefficients
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 865
EP  - 869
VL  - 353
IS  - 10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2015.07.012/
DO  - 10.1016/j.crma.2015.07.012
LA  - en
ID  - CRMATH_2015__353_10_865_0
ER  - 
%0 Journal Article
%A Colmenarejo, Laura
%A Rosas, Mercedes
%T Combinatorics on a family of reduced Kronecker coefficients
%J Comptes Rendus. Mathématique
%D 2015
%P 865-869
%V 353
%N 10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2015.07.012/
%R 10.1016/j.crma.2015.07.012
%G en
%F CRMATH_2015__353_10_865_0
Colmenarejo, Laura; Rosas, Mercedes. Combinatorics on a family of reduced Kronecker coefficients. Comptes Rendus. Mathématique, Volume 353 (2015) no. 10, pp. 865-869. doi : 10.1016/j.crma.2015.07.012. http://www.numdam.org/articles/10.1016/j.crma.2015.07.012/

[1] Ballantine, C.M.; Orellana, R.C. A combinatorial interpretation for the coefficients in the Kronecker product s(np,p)sλ, Sémin. Lothar. Comb., Volume 54A (2005/07) Art. B54Af, 29 p. (electronic)

[2] Briand, E.; Orellana, R.; Rosas, M. Reduced Kronecker coefficients and counter-examples to Mulmuley's strong saturation conjecture SH, Comput. Complex., Volume 18 (2009) no. 4, pp. 577-600 (with an appendix by Ketan Mulmuley)

[3] Briand, E.; Orellana, R.; Rosas, M. The stability of the Kronecker product of Schur functions, J. Algebra, Volume 331 (2011), pp. 11-27

[4] E. Briand, A. Rattan, M. Rosas, On the growth of the Kronecker and the reduced Kronecker coefficients, 2015 (preprint).

[5] Beck, M.; Sanyal, R. Combinatorial reciprocity theorems: enumerative combinatorics with a polyhedral angle, 2016 http://math.sfsu.edu/beck/crt.html (in press)

[6] Kirillov, A.N. An invitation to the generalized saturation conjecture, Publ. Res. Inst. Math. Sci., Volume 40 (2004) no. 4, pp. 1147-1239

[7] A. Klyachko, Quantum marginal problem and representations of the symmetric group, 2004.

[8] Knutson, A.; Tao, T. The honeycomb model of GLn(C) tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc., Volume 12 (1999) no. 4, pp. 1055-1090

[9] MacMahon, P.A. Combinatory Analysis. Vols. I, II (bound in one volume), Dover Phoenix Editions, Dover Publications, Inc., Mineola, NY, USA, 2004

[10] Murnaghan, F.D. The analysis of the Kronecker product of irreducible representations of the symmetric group, Amer. J. Math., Volume 60 (1938) no. 3, pp. 761-784

[11] Murnaghan, Francis D. On the Kronecker product of irreducible representations of the symmetric group, Proc. Natl. Acad. Sci. USA, Volume 42 (1956), pp. 95-98

[12] Vallejo, Ernesto Plane partitions and characters of the symmetric group, J. Algebr. Comb., Volume 11 (2000) no. 1, pp. 79-88

Cited by Sources:

Both authors are partially supported by MTM2013-40455-P, P12-FQM-2696, FQM-333, and FEDER.