Differential geometry
A note on Chowʼs entropy functional for the Gauss curvature flow
Comptes Rendus. Mathématique, Volume 351 (2013) no. 21-22, pp. 833-835.

Based on the entropy formula for the Gauss curvature flow introduced by Bennett Chow, we define an entropy functional that is monotone along the unnormalized flow and whose critical point is a shrinking self-similar solution.

À partir de la formule dʼentropie introduite par Bennett Chow pour le flot de la courbure de Gauss, nous définissons une entropie qui est monotone le long du flot non normalisé, et dont le point critique est une solution auto-similaire contractante.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.10.003
Guo, Hongxin 1; Philipowski, Robert 2; Thalmaier, Anton 2

1 School of Mathematics and Information Science, Wenzhou University, Wenzhou, Zhejiang 325035, China
2 Unité de Recherche en Mathématiques, FSTC, Université du Luxembourg, 6, rue Richard-Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg
@article{CRMATH_2013__351_21-22_833_0,
     author = {Guo, Hongxin and Philipowski, Robert and Thalmaier, Anton},
     title = {A note on {Chow's} entropy functional for the {Gauss} curvature flow},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {833--835},
     publisher = {Elsevier},
     volume = {351},
     number = {21-22},
     year = {2013},
     doi = {10.1016/j.crma.2013.10.003},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.10.003/}
}
TY  - JOUR
AU  - Guo, Hongxin
AU  - Philipowski, Robert
AU  - Thalmaier, Anton
TI  - A note on Chowʼs entropy functional for the Gauss curvature flow
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 833
EP  - 835
VL  - 351
IS  - 21-22
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.10.003/
DO  - 10.1016/j.crma.2013.10.003
LA  - en
ID  - CRMATH_2013__351_21-22_833_0
ER  - 
%0 Journal Article
%A Guo, Hongxin
%A Philipowski, Robert
%A Thalmaier, Anton
%T A note on Chowʼs entropy functional for the Gauss curvature flow
%J Comptes Rendus. Mathématique
%D 2013
%P 833-835
%V 351
%N 21-22
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.10.003/
%R 10.1016/j.crma.2013.10.003
%G en
%F CRMATH_2013__351_21-22_833_0
Guo, Hongxin; Philipowski, Robert; Thalmaier, Anton. A note on Chowʼs entropy functional for the Gauss curvature flow. Comptes Rendus. Mathématique, Volume 351 (2013) no. 21-22, pp. 833-835. doi : 10.1016/j.crma.2013.10.003. http://www.numdam.org/articles/10.1016/j.crma.2013.10.003/

[1] Chow, Bennett On Harnackʼs inequality and entropy for the Gaussian curvature flow, Commun. Pure Appl. Math., Volume 4 (1991) no. 4, pp. 469-483

[2] Guan, Pengfei; Ni, Lei Entropy and a convergence theorem for Gauss curvature flow in high dimension | arXiv

[3] Guo, Hongxin An entropy formula relating Hamiltonʼs surface entropy and Perelmanʼs W entropy, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013) no. 3–4, pp. 115-118

[4] Hamilton, Richard S. The Ricci flow on surfaces, Santa Cruz, CA, 1986 (Contemp. Math.), Volume vol. 71 (1988), pp. 237-262

[5] Hamilton, Richard S. Remarks on the entropy and Harnack estimates for the Gauss curvature flow, Commun. Anal. Geom., Volume 2 (1994) no. 1, pp. 155-165

[6] Perelman, Grisha The entropy formula for the Ricci flow and its geometric applications | arXiv

Cited by Sources: