Group theory/Topology
A remark on homomorphisms from right-angled Artin groups to mapping class groups
Comptes Rendus. Mathématique, Volume 351 (2013) no. 19-20, pp. 713-717.

We study rigidity properties of certain homomorphisms from right-angled Artin groups to mapping class groups. As an application, we show that if ΓMap(S) is a subgroup that contains some power of every Dehn twist, then any injective homomorphism ΓMap(S) is a restriction of an automorphism of Map(S).

Nous examinons la rigidité de certains homomorphismes entre groupes dʼArtin rectangulaires et groupes modulaires. Nous démontrons que, si ΓMap(S) est un sous-groupe qui contient quelque puissance de tout twist de Dehn, alors tout homomorphisme injectif ΓMap(S) est la restriction dʼun automorphisme de Map(S).

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.09.022
Aramayona, Javier 1; Souto, Juan 2

1 School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
2 Department of Mathematics, University of British Columbia, Vancouver, Canada
@article{CRMATH_2013__351_19-20_713_0,
     author = {Aramayona, Javier and Souto, Juan},
     title = {A remark on homomorphisms from right-angled {Artin} groups to mapping class groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {713--717},
     publisher = {Elsevier},
     volume = {351},
     number = {19-20},
     year = {2013},
     doi = {10.1016/j.crma.2013.09.022},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.09.022/}
}
TY  - JOUR
AU  - Aramayona, Javier
AU  - Souto, Juan
TI  - A remark on homomorphisms from right-angled Artin groups to mapping class groups
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 713
EP  - 717
VL  - 351
IS  - 19-20
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.09.022/
DO  - 10.1016/j.crma.2013.09.022
LA  - en
ID  - CRMATH_2013__351_19-20_713_0
ER  - 
%0 Journal Article
%A Aramayona, Javier
%A Souto, Juan
%T A remark on homomorphisms from right-angled Artin groups to mapping class groups
%J Comptes Rendus. Mathématique
%D 2013
%P 713-717
%V 351
%N 19-20
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.09.022/
%R 10.1016/j.crma.2013.09.022
%G en
%F CRMATH_2013__351_19-20_713_0
Aramayona, Javier; Souto, Juan. A remark on homomorphisms from right-angled Artin groups to mapping class groups. Comptes Rendus. Mathématique, Volume 351 (2013) no. 19-20, pp. 713-717. doi : 10.1016/j.crma.2013.09.022. http://www.numdam.org/articles/10.1016/j.crma.2013.09.022/

[1] Aramayona, J.; Leininger, C. Finite rigid sets in curve complexes, J. Topol. Anal., Volume 5 (2013)

[2] Aramayona, J.; Souto, J. Homomorphisms between mapping class groups, Geom. Topol., Volume 16 (2012)

[3] J. Aramayona, J. Souto, Rigidity phenomena in the mapping class group, preprint, 2012.

[4] Behrstock, J.; Margalit, D. Curve complexes and finite index subgroups of mapping class groups, Geom. Dedic., Volume 118 (2006)

[5] Bell, R.W.; Margalit, D. Injections of Artin groups, Comment. Math. Helv., Volume 82 (2007)

[6] Birman, J.; Hilden, H. On isotopies of homeomorphisms of Riemann surfaces, Ann. Math., Volume 97 (1973)

[7] Birman, J.; Lubotzky, A.; McCarthy, J. Abelian and solvable subgroups of the mapping class groups, Duke Math. J., Volume 50 (1983)

[8] Brendle, T.; Margalit, D. Commensurations of the Johnson kernel, Geom. Topol., Volume 8 (2004)

[9] M. Bridson, A. Pettet, J. Souto, The abstract commensurator of the Johnson kernels, in preparation.

[10] Clay, M.; Leininger, C.J.; Mangahas, J. The geometry of right-angled Artin subgroups of mapping class groups, Groups Geom. Dyn., Volume 6 (2012)

[11] Farb, B.; Ivanov, N. The Torelli geometry and its applications | arXiv

[12] Farb, B.; Margalit, D. A Primer on Mapping Class Groups, Princeton Mathematical Series, vol. 49, Princeton University Press, 2012

[13] Funar, L. On power subgroups of mapping class groups | arXiv

[14] Harvey, W. Boundary structure of the modular group, Riemann Surfaces and Related Topics, Proceedings of the 1978 Stony Brook Conference, Ann. Math. Stud., vol. 97, Princeton University Press, 1981

[15] Irmak, E. Superinjective simplicial maps of complexes of curves and injective homomorphisms of subgroups of mapping class groups I, Topology, Volume 43 (2004)

[16] Irmak, E. Superinjective simplicial maps of complexes of curves and injective homomorphisms of subgroups of mapping class groups II, Topol. Appl., Volume 153 (2006)

[17] Ivanov, N.V. Automorphisms of complexes of curves and of Teichmüller spaces, Int. Math. Res. Not. IRMN, Volume 14 (1997)

[18] Koberda, T. Right-angled Artin groups and a generalized isomorphism problem for finitely generated subgroups of mapping class groups, Geom. Funct. Anal., Volume 22 (2012) no. 6, pp. 1541-1590

[19] Korkmaz, M. Automorphisms of complexes of curves on punctured spheres and on punctured tori, Topol. Appl., Volume 95 (1999)

[20] Luo, F. Automorphisms of the complex of curves, Topology, Volume 39 (2000)

[21] Masbaum, G. Quantum representations of mapping class groups, Groupes et géométrie, Journée annuelle 2003 de la Société mathématique de France, 2003, pp. 19-36

[22] Shackleton, K.J. Combinatorial rigidity in curve complexes and mapping class groups, Pac. J. Math., Volume 230 (2007)

Cited by Sources:

The second author has been partially supported by NSERC Discovery and Accelerator Supplement grants.