Partial Differential Equations
Global existence and boundedness of classical solutions for a chemotaxis model with logistic source
[Existence globale et bornes des solutions classiques dʼun modèle chimiotaxique avec une source logistique]
Comptes Rendus. Mathématique, Tome 351 (2013) no. 15-16, pp. 585-591.

On considère le système de la chimiotaxie :

{ut=Δu(uχ(v)v)+f(u),xΩ,t>0,vt=Δvvug(u),xΩ,t>0,
avec conditions de Neumann homogènes dans un domaine borné ΩRn, n1, de frontière régulière ; on suppose que f est une généralisation dʼune source logistique :
f(u)=aubu2,u0, avec a>0,b>0.
De plus, χ(s) et g(s) sont des fonctions positives ou nulles régulières vérifiant :
χ(s)ϱ(1+ϑs)k,s0, avec ϱ>0,ϑ>0,k>1,
g(s)h0(1+hs)δ,s0, avec h0>0,h0,δ0.
On démontre que, pour toute valeur positive de ϱ, a et b, les solutions classiques du système ci-dessus sont uniformément bornées en temps. Ce résultat étend un résultat récent de C. Mu, L. Wang, P. Zheng et Q. Zhang (2013) [13], qui établit lʼexistence globale et des bornes des solutions classiques sous les conditions 0a<2b et ϱ assez petit.

We consider the chemotaxis system:

{ut=Δu(uχ(v)v)+f(u),xΩ,t>0,vt=Δvv+ug(u),xΩ,t>0,
under homogeneous Neumann boundary conditions in a bounded domain ΩRn, n1, with smooth boundary and function f is assumed to generalize the logistic source:
f(u)=aubu2,u0, with a>0,b>0.
Moreover, χ(s) and g(s) are nonnegative smooth functions and satisfy:
χ(s)ϱ(1+ϑs)k,s0, with some ϱ>0,ϑ>0 and k>1,
g(s)h0(1+hs)δ,s0,withh0>0,h0,δ0.
We prove that for all positive values of ϱ, a and b, classical solutions to the above system are uniformly-in-time bounded. This result extends a recent result by C. Mu, L. Wang, P. Zheng and Q. Zhang (2013) [13], which asserts the global existence and boundedness of classical solutions on condition that 0a<2b and ϱ be sufficiently small.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.07.027
Baghaei, Khadijeh 1 ; Hesaaraki, Mahmoud 2

1 Department of Mathematics, Iran University of Science and Technology, Tehran, Iran
2 Department of Mathematics, Sharif University of Technology, Tehran, Iran
@article{CRMATH_2013__351_15-16_585_0,
     author = {Baghaei, Khadijeh and Hesaaraki, Mahmoud},
     title = {Global existence and boundedness of classical solutions for a chemotaxis model with logistic source},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {585--591},
     publisher = {Elsevier},
     volume = {351},
     number = {15-16},
     year = {2013},
     doi = {10.1016/j.crma.2013.07.027},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.07.027/}
}
TY  - JOUR
AU  - Baghaei, Khadijeh
AU  - Hesaaraki, Mahmoud
TI  - Global existence and boundedness of classical solutions for a chemotaxis model with logistic source
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 585
EP  - 591
VL  - 351
IS  - 15-16
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.07.027/
DO  - 10.1016/j.crma.2013.07.027
LA  - en
ID  - CRMATH_2013__351_15-16_585_0
ER  - 
%0 Journal Article
%A Baghaei, Khadijeh
%A Hesaaraki, Mahmoud
%T Global existence and boundedness of classical solutions for a chemotaxis model with logistic source
%J Comptes Rendus. Mathématique
%D 2013
%P 585-591
%V 351
%N 15-16
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.07.027/
%R 10.1016/j.crma.2013.07.027
%G en
%F CRMATH_2013__351_15-16_585_0
Baghaei, Khadijeh; Hesaaraki, Mahmoud. Global existence and boundedness of classical solutions for a chemotaxis model with logistic source. Comptes Rendus. Mathématique, Tome 351 (2013) no. 15-16, pp. 585-591. doi : 10.1016/j.crma.2013.07.027. http://www.numdam.org/articles/10.1016/j.crma.2013.07.027/

[1] Cieślak, T.; Stinner, C. Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions, J. Differ. Equ., Volume 252 (2012), pp. 5832-5851

[2] Herrero, M.A.; Velázquez, J.J.L. Chemotactic collapse for the Keller–Segel model, J. Math. Biol., Volume 35 (1996), pp. 177-194

[3] Herrero, M.A.; Velázquez, J.J.L. A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa, Cl. Sci. IV, Volume 24 (1997), pp. 633-683

[4] Hillen, T.; Painter, K.J. Global existence for a parabolic chemotaxis model with prevention of overcrowding, Acta Appl. Math., Volume 26 (2001), pp. 280-301

[5] Hillen, T.; Painter, K.J. A userʼs guide to PDE models for chemotaxis, J. Math. Biol., Volume 58 (2009), pp. 183-217

[6] Horstmann, D. From 1970 until present: the Keller–Segel model in chemotaxis and its consequences, I, Jahresber. Dtsch. Math.-Ver., Volume 105 (2003), pp. 103-165

[7] Horstmann, D. From 1970 until present: the Keller–Segel model in chemotaxis and its consequences, II, Jahresber. Dtsch. Math.-Ver., Volume 106 (2004), pp. 51-69

[8] Horstmann, D.; Wang, G. Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math., Volume 12 (2001), pp. 159-177

[9] Horstmann, D.; Winkler, M. Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., Volume 215 (2005), pp. 52-107

[10] Jäger, W.; Luckhaus, S. On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., Volume 329 (1992), pp. 819-824

[11] Keller, E.F.; Segel, L.A. Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., Volume 26 (1970), pp. 399-415

[12] Mimura, M.; Tsujikawa, T. Aggregating pattern dynamics in a chemotaxis model including growth, Physica, A, Volume 230 (1996), pp. 499-543

[13] Mu, C.; Wang, L.; Zheng, P.; Zhang, Q. Global existence and boundedness of classical solutions to a parabolic–parabolic chemotaxis system, Nonlinear Anal., Real World Appl., Volume 14 (2013), pp. 1634-1642

[14] Nagai, T. Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., Volume 5 (1995), pp. 581-601

[15] Nagai, T. Blow-up of nonradial solutions to parabolic–elliptic systems modelling chemotaxis in two-dimensional domains, J. Inequal. Appl., Volume 6 (2001), pp. 37-55

[16] Nagai, T.; Senba, T.; Yoshida, K. Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Volume 40 (1997), pp. 411-433

[17] Nakaguchi, E.; Osaki, K. Global existence of solutions to a parabolic–parabolic system for chemotaxis with weak degradation, Nonlinear Anal. TMA, Volume 74 (2011), pp. 286-297

[18] Osaki, K.; Tsujikawa, T.; Yagi, A.; Mimura, M. Exponential attractor for a chemotaxis–growth system of equations, Nonlinear Anal. TMA, Volume 51 (2002), pp. 119-144

[19] Osaki, K.; Yagi, A. Finite dimensional attractors for one-dimensional Keller–Segel equations, Funkc. Ekvacioj, Volume 44 (2001), pp. 441-469

[20] Senba, T.; Suzuki, T. Parabolic system of chemotaxis: Blow-up in a finite and the infinite time, Methods Appl. Anal., Volume 8 (2001), pp. 349-367

[21] Tao, Y. Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., Volume 381 (2011), pp. 521-529

[22] Tao, Y.; Winkler, M. Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity, J. Differ. Equ., Volume 252 (2012), pp. 692-715

[23] Tao, Y.; Winkler, M. Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differ. Equ., Volume 252 (2012), pp. 2520-2543

[24] Tello, J.I.; Winkler, M. A chemotaxis system with logistic source, Commun. Partial Differ. Equ., Volume 32 (2007), pp. 849-877

[25] Winkler, M. Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equ., Volume 35 (2010), pp. 1516-1537

[26] Winkler, M. Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., Volume 283 (2010), pp. 1664-1673

[27] Winkler, M. Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Differ. Equ., Volume 248 (2010), pp. 2889-2905

[28] Winkler, M. Does a ‘volume-filling effect’ always prevent chemotactic collapse?, Math. Methods Appl. Sci., Volume 33 (2010), pp. 12-24

[29] Winkler, M. Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Math. Pures Appl. (2013) (in press) | DOI

[30] Yagi, A. Norm behavior of solutions to a parabolic system of chemotaxis, Math. Jpn., Volume 45 (1997), pp. 241-265

Cité par Sources :