Partial differential equations
Effective stability for slow time-dependent near-integrable Hamiltonians and application
Comptes Rendus. Mathématique, Volume 351 (2013) no. 17-18, pp. 673-676.

The aim of this note is to prove a result of effective stability for a non-autonomous perturbation of an integrable Hamiltonian system, provided that the perturbation depends slowly on time. Then we use this result to clarify and extend a stability result of Giorgilli and Zehnder for a mechanical system with an arbitrary time-dependent potential.

Le but de cette note est de démontrer un résultat de stabilité effective pour une perturbation non autonome dʼun système hamiltonien intégrable, sous la condition que la perturbation dépende lentement du temps. Nous utilisons ensuite ce résultat pour clarifier et généraliser un résultat de stabilité de Giorgilli et Zehnder pour des systèmes mécaniques dont le potentiel dépend arbitrairement du temps.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.07.024
Bounemoura, Abed 1

1 Institut des hautes études scientifiques, 35, route de Chartres, 91440 Bures-sur-Yvette, France
@article{CRMATH_2013__351_17-18_673_0,
     author = {Bounemoura, Abed},
     title = {Effective stability for slow time-dependent near-integrable {Hamiltonians} and application},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {673--676},
     publisher = {Elsevier},
     volume = {351},
     number = {17-18},
     year = {2013},
     doi = {10.1016/j.crma.2013.07.024},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.07.024/}
}
TY  - JOUR
AU  - Bounemoura, Abed
TI  - Effective stability for slow time-dependent near-integrable Hamiltonians and application
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 673
EP  - 676
VL  - 351
IS  - 17-18
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.07.024/
DO  - 10.1016/j.crma.2013.07.024
LA  - en
ID  - CRMATH_2013__351_17-18_673_0
ER  - 
%0 Journal Article
%A Bounemoura, Abed
%T Effective stability for slow time-dependent near-integrable Hamiltonians and application
%J Comptes Rendus. Mathématique
%D 2013
%P 673-676
%V 351
%N 17-18
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.07.024/
%R 10.1016/j.crma.2013.07.024
%G en
%F CRMATH_2013__351_17-18_673_0
Bounemoura, Abed. Effective stability for slow time-dependent near-integrable Hamiltonians and application. Comptes Rendus. Mathématique, Volume 351 (2013) no. 17-18, pp. 673-676. doi : 10.1016/j.crma.2013.07.024. http://www.numdam.org/articles/10.1016/j.crma.2013.07.024/

[1] Bounemoura, A. Effective stability for Gevrey and finitely differentiable prevalent Hamiltonians, Comm. Math. Phys., Volume 1 (2011), pp. 157-183

[2] Bounemoura, A.; Niederman, L. Generic Nekhoroshev theory without small divisors, Ann. Inst. Fourier (Grenoble), Volume 62 (2012) no. 1, pp. 277-324

[3] Chirikov, B.V. A universal instability of many-dimensional oscillator systems, Phys. Rep., Volume 52 (1979), pp. 263-379

[4] Giorgilli, A.; Zehnder, E. Exponential stability for time dependent potentials, Z. Angew. Math. Phys., Volume 43 (1992) no. 5, pp. 827-855

[5] Ilyashenko, I.S. A steepness test for analytic function, Russian Math. Surveys, Volume 41 (1986), pp. 229-230

[6] Kuksin, S.; Neishtadt, A.I. On quantum averaging, quantum KAM and quantum diffusion, 2012 (preprint) | arXiv

[7] Lochak, P. Canonical perturbation theory via simultaneous approximation, Russ. Math. Surveys, Volume 47 (1992) no. 6, pp. 57-133

[8] Lochak, P.; Marco, J.-P.; Sauzin, D. On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems, Mem. Amer. Math. Soc., Volume 775 (2003) (145 pp)

[9] Lochak, P.; Neishtadt, A.I. Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian, Chaos, Volume 2 (1992) no. 4, pp. 495-499

[10] Morbidelli, A. Bounds on diffusion in phase space: connection between Nekhoroshev and KAM theorems and superexponential stability of invariant tori, Hamiltonian Systems with Three or More Degrees of Freedom, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 533, Kluwer Acad. Publ., Dordrecht, The Netherlands, 1999, pp. 514-517

[11] Nekhoroshev, N.N. An exponential estimate of the time of stability of nearly integrable Hamiltonian systems, Russian Math. Surveys, Volume 32 (1977) no. 6, pp. 1-65

[12] Niederman, L. Hamiltonian stability and subanalytic geometry, Ann. Inst. Fourier, Volume 56 (2006) no. 3, pp. 795-813

[13] Pöschel, J. Nekhoroshev estimates for quasi-convex Hamiltonian systems, Math. Z., Volume 213 (1993), pp. 187-216

Cited by Sources: