Optimal Control/Calculus of Variations
A least-squares formulation for the approximation of null controls for the Stokes system
Comptes Rendus. Mathématique, Volume 351 (2013) no. 13-14, pp. 545-550.

This work deals with the approximation of distributed null controls for the Stokes equation. The existence of L2 controls has been obtained by Fursikov and Imanuvilov (1996) [5] via Carleman-type estimates. We introduce and analyze a least-squares formulation of the controllability problem, and we show that it allows the construction of convergent sequences of functions toward null controls for the Stokes system.

Cette note concerne lʼapproximation de contrôles exactes pour le système de Stokes. Lʼexistence de contrôles L2 a été obtenue dans Fursikov et Imanuvilov (1996) [5], en utilisant des inégalités de type Carleman. On introduit et analyse une formulation de type moindres carrés et on montre quʼelle permet la construction de suites convergentes de fonctions vers des contrôles à zéro du système de Stokes.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.07.019
Münch, Arnaud 1; Pedregal, Pablo 2

1 Laboratoire de mathématiques, Université Blaise-Pascal (Clermont-Ferrand-2), UMR CNRS 6620, campus des Cézeaux, 63177 Aubière, France
2 Departamento de Matemáticas, ETSI Industriales, Universidad de Castilla-La-Mancha, 13071 Ciudad Real, Spain
@article{CRMATH_2013__351_13-14_545_0,
     author = {M\"unch, Arnaud and Pedregal, Pablo},
     title = {A least-squares formulation for the approximation of null controls for the {Stokes} system},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {545--550},
     publisher = {Elsevier},
     volume = {351},
     number = {13-14},
     year = {2013},
     doi = {10.1016/j.crma.2013.07.019},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.07.019/}
}
TY  - JOUR
AU  - Münch, Arnaud
AU  - Pedregal, Pablo
TI  - A least-squares formulation for the approximation of null controls for the Stokes system
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 545
EP  - 550
VL  - 351
IS  - 13-14
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.07.019/
DO  - 10.1016/j.crma.2013.07.019
LA  - en
ID  - CRMATH_2013__351_13-14_545_0
ER  - 
%0 Journal Article
%A Münch, Arnaud
%A Pedregal, Pablo
%T A least-squares formulation for the approximation of null controls for the Stokes system
%J Comptes Rendus. Mathématique
%D 2013
%P 545-550
%V 351
%N 13-14
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.07.019/
%R 10.1016/j.crma.2013.07.019
%G en
%F CRMATH_2013__351_13-14_545_0
Münch, Arnaud; Pedregal, Pablo. A least-squares formulation for the approximation of null controls for the Stokes system. Comptes Rendus. Mathématique, Volume 351 (2013) no. 13-14, pp. 545-550. doi : 10.1016/j.crma.2013.07.019. http://www.numdam.org/articles/10.1016/j.crma.2013.07.019/

[1] Bochev, B.; Gunzburger, M. Least-Squares Finite Element Methods, Applied Mathematical Sciences, vol. 166, Springer, New York, 2009 (xxii+660 p)

[2] Coron, J.-M. Control and Nonlinearity, Mathematical Surveys and Monographs, vol. 136, American Mathematical Society, Providence, RI, 2007 (xiv+426 p)

[3] Fabre, C.; Lebeau, G. Prolongement unique des solutions de lʼéquation de Stokes, Commun. Partial Differ. Equ., Volume 21 (1996), pp. 573-596 (in French)

[4] Fernández-Cara, E.; Guerrero, S.; Imanuvilov, O.Yu.; Puel, J.-P. Local exact controllability of the Navier–Stokes system, J. Math. Pures Appl., Volume 83 (2004) no. 12, pp. 1501-1542

[5] Fursikov, A.V.; Imanuvilov, O.Yu. (Lecture Notes Series), Volume vol. 34, Seoul National University, Korea (1996), pp. 1-163

[6] Glowinski, R.; Lions, J.-L.; He, J. Exact and Approximate Controllability for Distributed Systems: A Numerical Approach, Encyclopedia of Mathematics and Its Applications, vol. 117, Cambridge University Press, Cambridge, UK, 2008

[7] Lasiecka, I.; Triggiani, R. Control Theory for Partial Differential Equations: Continuous and Approximation Theories. I. Abstract Parabolic Systems, Encyclopedia of Mathematics and Its Applications, vol. 74, Cambridge University Press, Cambridge, UK, 2000

[8] A. Münch, P. Pedregal, Numerical null controllability of the heat equation through a variational approach, preprint.

[9] A. Münch, P. Pedregal, Numerical approximations of null controls for the Stokes through a least-squares approach, in preparation.

[10] Münch, A.; Zuazua, E. Numerical approximation of null controls for the heat equation: ill-posedness and remedies, Inverse Probl., Volume 26 (2010) no. 8, p. 085018 (39 p)

[11] Pedregal, P. A variational perspective on controllability, Inverse Probl., Volume 26 (2010), p. 015004 (17 p)

[12] Temam, R. Navier–Stokes Equations. Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001 (xiv+408 p)

Cited by Sources: