Algebraic Geometry
Mixed Hodge structures and Weierstrass σ-function
Comptes Rendus. Mathématique, Volume 351 (2013) no. 13-14, pp. 551-555.

A σ-operator on a complexification $VC$ of an $R$-vector space $VR$ is an operator $A∈EndC(VC)$ such that $σ(A)=0$, where $σ(z)$ denotes the Weierstrass σ-function. In this paper, we define the notion of strongly pseudo-real σ-operator and prove that there is a one-to-one correspondence between real mixed Hodge structures and strongly pseudo-real σ-operators.

Un σ-opérateur sur la complexification $VC$ dʼun espace vectoriel réel $VR$ est un opérateur $A∈EndC(VC)$ tel que $σ(A)=0$, où $σ(z)$ est la fonction σ de Weierstrass. Dans cet article, nous introduisons la notion de σ-opérateur fortement pseudo-réel et démontrons quʼil y a une correspondance biunivoque entre les structures de Hodge mixtes réelles et les σ-opérateurs fortement pseudo-réels.

Accepted:
Published online:
DOI: 10.1016/j.crma.2013.07.015
Banaszak, Grzegorz 1; Milewski, Jan 2

1 Department of Mathematics and Computer Science, Adam Mickiewicz University, Poznań 61-614, Poland
2 Institute of Mathematics, Poznań University of Technology, ul. Piotrowo 3A, 60-965 Poznań, Poland
@article{CRMATH_2013__351_13-14_551_0,
author = {Banaszak, Grzegorz and Milewski, Jan},
title = {Mixed {Hodge} structures and {Weierstrass} \protect\emph{\ensuremath{\sigma}}-function},
journal = {Comptes Rendus. Math\'ematique},
pages = {551--555},
publisher = {Elsevier},
volume = {351},
number = {13-14},
year = {2013},
doi = {10.1016/j.crma.2013.07.015},
language = {en},
url = {http://www.numdam.org/articles/10.1016/j.crma.2013.07.015/}
}
TY  - JOUR
AU  - Banaszak, Grzegorz
AU  - Milewski, Jan
TI  - Mixed Hodge structures and Weierstrass σ-function
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 551
EP  - 555
VL  - 351
IS  - 13-14
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.07.015/
DO  - 10.1016/j.crma.2013.07.015
LA  - en
ID  - CRMATH_2013__351_13-14_551_0
ER  - 
%0 Journal Article
%A Banaszak, Grzegorz
%A Milewski, Jan
%T Mixed Hodge structures and Weierstrass σ-function
%J Comptes Rendus. Mathématique
%D 2013
%P 551-555
%V 351
%N 13-14
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.07.015/
%R 10.1016/j.crma.2013.07.015
%G en
%F CRMATH_2013__351_13-14_551_0
Banaszak, Grzegorz; Milewski, Jan. Mixed Hodge structures and Weierstrass σ-function. Comptes Rendus. Mathématique, Volume 351 (2013) no. 13-14, pp. 551-555. doi : 10.1016/j.crma.2013.07.015. http://www.numdam.org/articles/10.1016/j.crma.2013.07.015/

[1] Banaszak, G.; Milewski, J. Hodge structures and Weierstrass sigma-function, C. R. Acad. Sci. Paris, Ser. I, Volume 350 (2012), pp. 777-780

[2] Cattani, E.; Kaplan, A.; Schmid, W. Degeneration of Hodge structures, Ann. Math. (2), Volume 123 (1986) no. 3, pp. 457-535

[3] P. Deligne, Structures de Hodge mixtes réelles. The appendix to “On the SL(2)-orbits in Hodge theory” by E. Cattani and A. Kaplan, IHES pre-pub./M/82/58 (1982).

[4] Deligne, P. Structures de Hodge mixtes réelles, Proc. Symp. Pure Math., Volume 55 (1994), pp. 509-514

[5] Gordon, B. A survey of the Hodge conjecture for Abelian varieties (Lewis, J., ed.), A Survey of the Hodge Conjecture, 1999, pp. 297-356 (Appendix B)

[6] Peters, C.; Steenbrink, J. Mixed Hodge Structures, Ergeb. Math. Grenzgeb., vol. 52, Springer, 2008

Cited by Sources: