Algebra/Topology
Division of the Dickson algebra by the Steinberg unstable module
Comptes Rendus. Mathématique, Volume 351 (2013) no. 11-12, pp. 425-428.

We compute the division of the Dickson algebra by the Steinberg unstable module in the category of unstable modules over the mod-2 Steenrod algebra.

On détermine la division de lʼalgèbre de Dickson par le module instable de Steinberg dans la catégorie des modules instables sur lʼalgèbre de Steenrod modulo 2.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.07.010
Hai, Nguyen Dang Ho 1

1 University of Hue, College of Sciences, 77 Nguyen Hue Street, Hue City, Viet Nam
@article{CRMATH_2013__351_11-12_425_0,
     author = {Hai, Nguyen Dang Ho},
     title = {Division of the {Dickson} algebra by the {Steinberg} unstable module},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {425--428},
     publisher = {Elsevier},
     volume = {351},
     number = {11-12},
     year = {2013},
     doi = {10.1016/j.crma.2013.07.010},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.07.010/}
}
TY  - JOUR
AU  - Hai, Nguyen Dang Ho
TI  - Division of the Dickson algebra by the Steinberg unstable module
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 425
EP  - 428
VL  - 351
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.07.010/
DO  - 10.1016/j.crma.2013.07.010
LA  - en
ID  - CRMATH_2013__351_11-12_425_0
ER  - 
%0 Journal Article
%A Hai, Nguyen Dang Ho
%T Division of the Dickson algebra by the Steinberg unstable module
%J Comptes Rendus. Mathématique
%D 2013
%P 425-428
%V 351
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.07.010/
%R 10.1016/j.crma.2013.07.010
%G en
%F CRMATH_2013__351_11-12_425_0
Hai, Nguyen Dang Ho. Division of the Dickson algebra by the Steinberg unstable module. Comptes Rendus. Mathématique, Volume 351 (2013) no. 11-12, pp. 425-428. doi : 10.1016/j.crma.2013.07.010. http://www.numdam.org/articles/10.1016/j.crma.2013.07.010/

[1] Dickson, Leonard Eugene A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc., Volume 12 (1911) no. 1, pp. 75-98

[2] Hai, Nguyen Dang Ho; Schwartz, Lionel; Nam, Tran Ngoc La fonction génératrice de Minc et une « conjecture de Segal » pour certains spectres de Thom, Adv. Math., Volume 225 (2010) no. 3, pp. 1431-1460

[3] Kuhn, Nicholas J. Chevalley group theory and the transfer in the homology of symmetric groups, Topology, Volume 24 (1985) no. 3, pp. 247-264

[4] Kuhn, Nicholas J. The rigidity of L(n), Seattle, Wash., 1985 (Lecture Notes in Math.), Volume vol. 1286, Springer, Berlin (1987), pp. 286-292

[5] Lannes, Jean Sur les espaces fonctionnels dont la source est le classifiant dʼun p-groupe abélien élémentaire, Inst. Hautes Études Sci. Publ. Math., Volume 75 (1992), pp. 135-244 (With an appendix by Michel Zisman)

[6] Lannes, Jean; Zarati, Saïd Sur les foncteurs dérivés de la déstabilisation, Math. Z., Volume 194 (1987) no. 1, pp. 25-59

[7] Mitchell, Stephen A.; Priddy, Stewart B. Stable splittings derived from the Steinberg module, Topology, Volume 22 (1983) no. 3, pp. 285-298

[8] Schwartz, Lionel Unstable Modules over the Steenrod Algebra and Sullivanʼs Fixed Point Set Conjecture, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1994

[9] Steinberg, Robert Prime power representations of finite linear groups, Canad. J. Math., Volume 8 (1956), pp. 580-591

Cited by Sources:

This note was written while the author was a postdoctoral researcher (4/2011–4/2012) at “Institut de recherche en mathématique et physique” (IRMP) and was revised while the author was a visitor (9/2012) at “Vietnam Institute for Advanced Study in Mathematics” (VIASM). The author would like to thank both institutes for their hospitality.